CSE340 Principles of Programming Languages

Hindley-Milner Type
Checking

Automatic Type Inference

What can be inferred
about type of for x from this
definition?

Eod

= X

Automatic Type Inference

1

]

= =

fis a function that takes a single

argument. So the type of f can be

described as: T1 (k) (T2)
2 =

Automatic Type Inference

=%
s
i

The return value of fis equal to its

input, so their types must match:
Tl = T2

e =

Automatic Type Inference

1

i

= 72)

So fis a function that takes one argument and its

return type is the same as its argument’s type.
Therefore type of fis: T1(*) (T1)

=

Automatic Type Inference

And we don’t know anything
about the type of x
Elog)e=—x

i

= 72)

So fis a function that takes one argument and its

return type is the same as its argument’s type.
Therefore type of fis: T1(*) (T1)

=

Automatic Type Inference

Qw about functiorD

glocle=ioc kel

Automatic Type Inference

L]
e RiES

S

What can be inferred
from this term?

Automatic Type Inference

glocle=ioc kel

\

= o
x is used in an arithmetic expression

involving the integer constant 1. So x

must be of integer type
& Ser typ 7

Automatic Type Inference

So the type of function g should be

further restricted to: 1nt (%) (int)
_ J

To perform Hindley-Milner type checking:

Start by generating the abstract syntax tree of the function

Assume unknown types for arguments: T1, T2, ...

Examine the tree nodes and apply type constraints to further restrict the

types

The type constraints that can be applied depend on the programming
language used. In the following examples we use simple rules similar to

those in functional languages like OCaml

Example #1

ECabrcdirs=-1f5b. =1 then

if a[1] (@) then
eiEy

else
c(d)

else

if a[b] (@) then
c(b)

else
EGas b,)

Example #1

f(a,b,c,d) = 1f b = 1 then

if a[l1] (@) then
@iy

else
c(d)

else

if a[b] (@) then
c(b)

else
filfa=rbr =5l Fd)

if

if

i ()
SBE S oy))

if

apply

Condition

et Else
Condition

O
DO D

Condition

Then

@ a The function
(=) 3

AN S

Parameters in order

a a PR C =GO i

i ()

LER)AT2 3T 455

12
3
T4
15

if

apply

Top-Down order

NECRI2 3T 455)
2
13
T4

(o4 0 O 0] =

15

‘ if
The return type of the function should

D
TR T (3

2o O H O

be the same as the type of the if node

bool

=
GG‘

o)
m‘@

The condition should be of type boolean

MECR)T2 37T 45T5])

2
13
T4

15

if

apply

NECRI2 3T 455)
2
13
T4

(o4 0 O 0] =

15

©
& o .@‘6~

-9,
Sk
<

The then node should be of the same
type as the if node

R/

15 &

NECRI2 3T 455)
2
13
T4

(o4 0 O 0] =

15

The else node should be of the same

type as the if node

f iT1(*x)(T2,int,T4,T5)
o

b :int

c : T4

ds=li5

The operands of a comparison
operator (=) should be of the same G
type. The right operand is int, so b

T el k)= (A2 it A e=les))
a2
b= =¥nt

c : T4

j e B 0 B 0 W U e L)
o

bk

c : T4

The then node should be of the same
type as the if node

T el k)= (A2 it A e=les))
a2
b= =¥nt

c : T4

The else node should be of the same

type as the if node) apply

AR

G (D) E©
&5 on s ORO

O S

R

TL() (T2 ,-4n 5 T45T5)
T2
int
T4

£
a
b
C
d

15

j e B 0 B 0 W U e L)
o
bk
c : T4
ds=li5

The then node should be of the same
type as the if node

f :T1(x)(T2,1int,T4,T5)

a T2
oENETae
(o] 1
d ‘T5
e T1
apply
A\

The else node should be of the same

@ @ @ type as the if node
SR e oy

Tl (2 R it AR SIES)
T2
int
T4
T5

The left-most child node of an
apply node must be a function, the other
children are the parameters passed to that
function. The return type of the function is

the type of the apply node a @g{ 8@
e

f :T1(%x)(T2,int,T1(%x)(int),T5)
e 4

b :int

c :T1(x)(int)

ds &5

¢ must be a function that takes one

integer argument and returns a value of type T1,
ie. T4 = T1(x*) (int)

T1(x)(int) int

b TG T2 —nts TR Cint=ant)
QS rie?

bEimt

© SE I HEIR G

d :int

We know that c is a function that

takes an integer as argument and returns
T1. The argument passed here is d, so d
must be of type int, i.e. T5 = 1int

| e B S P o G o e e)
a T2

int

T1(x) (int)
The type of [] node must be a function int

that takes an integer as argument and returns
boolean, i.e. bool(*) (int)

ofo

ofo

e 4 1 3 (e e M R o ot)
QS rie?

bEimt

c T1(x)(int)

ds SRt

We know that c is a function that
takes an integer as argument and returns

T1, we also know that b is integer

e 4 1 3 (e e M R o ot)
QS rie?

bEimt

c T1(x)(int)

ds SRt

We know that fis a function that takes 4
é @ arguments of types T2, int, T1(*)(int) and int and
returns a value of type T1. We know that 4 is of type

T2, and c is of type T1(*)(int) and d is of type int.
The - node should be of type int

f :T1(x) (array(bool (%) (int)),int,T1(x)(int), int)
a :array(bool(x)(int))

bEimt

R SRECHNETE)

ds SRt

Since the indexing operator is applied

to a, it must be an array. Each element of the

array should be the same type as the [] node,
i.e. T2 = array(bool(x) (int)) @ @

e fra Y oo O E R CI M E) Tt T G G) T i)
a ‘array(bool(x)(int))

bEimt

c T1(x)(int)

ds SRt

b is used as an index value, it must be int
(we already know that —> no conflict). Also a
must be an array of booL(x*) (int) which is

consistent with what we already inferred

e fra Y oo O E R CI M E) Tt T G G) T i)
a ‘array(bool(x)(int))

bEimt

c T1(x)(int)

ds SRt

b is an operand of an arithmetic
operation involving an integer (1), so it must

be int which is consistent with what we already

inferred. Also the type of - node is consistent
with the types of operands

T1(x) (array(bool(x)(int)),int,T1(x)(int),int)

array(bool(x)(int))

int

T1(x) (int)

int

Example #2

g(a,b,c) = if a(1) = 3.5 then
b -1
else
if c[5] < a(@) then
0
else

gitag=bet=ic)

g T1(%)(T2,T3,T4)
s
ISl
c :T4

2=
=aa B R, O,

Bottom-Up order

g SR T2 SNt TA)
a .12

b :int

b must be an integer,
ie. T3 = 1int

g :T1(x)(T5(%) (int),int,T4)
a :T5(x)(int)

DS

c : T4

©

T5(*) (int)

a must be a function that takes an

integer as argument and we don’t know its return type yet,

i.e. T2 = T5(%) (int)

g :T1(x)(T5(x)(int),int,array(T6))
A P e R)
[EERIEER

c :array(Te6)

= ”

¢ must be an array
since it is the left child of e a
an indexing node. The type array (T6)
of the elements of the array
are not known yet, i.e.

T4 = array(T6)

The operands of a g ‘T1(%) (T5(x) (int), int,array(T5))
comparison operator a ‘T5(x) (int)
must be of the same type, JSEEEEUE

ie.T6 = T5 c ‘array(T5)

sEof ool e IO
O

T5

if

DGR ETS CE RN SNt FaEtrs)s)
T5(%) (int)

int

array(T5)

Recursive call to ¢ with
no conflict. The type of the
apply node must be the same as

return type of g, i.e. T1

ol M S R G e el S VA e)
= Vo 5 Pl)
SR

c :array(T5)

if

We know thata is a
function that takes a single
integer argument and returns
a value of type T5

g :T1(x)(float(x)(int),int,array(float))
a :float(x)(int)
b :int

c :array(float)

(=3 z
T5=float Eloat

float float

The operands of a
comparison operator must be
of the same type, so T5
should be float

float float

g T1(x)(float(x)(int),int,array(float))
a :float(x)(int)
[EERIEER

c .array(float)

if

b is already known
to be of type int, no conflict.
Also the type of the “-”
node must be int

g :int(x) (float(x)(int),int,array(float))
a :float(x)(int)
[EERIEER

c ‘array(float)

The condition of an if node
must be of type boolean which it is. The
then and else nodes must have the same
type as the ifnode. So T1 = int

g :int(x)(float(x)(int),int,array(float))
a :float(x)(int)
[EERIEER

c .array(float)

The condition of an if node must
be of type boolean which it is. The then
and else nodes must have the same type
as the if node. No conflict

The return type of the function g

, g :int(x)(float(x)(int),int,array(float))
must be the same as the type of the if node

. . . . a :float(x) (int)
which it is —> No conflict

b :int

c .array(float)

int(x) (float(x) (int),int,array(float))

a :float(x)(int)

m E E EmEEEEEEEEEEESEEEEEEEEEEEESEEEEESESEEEEESEEEEEEEEEEEEENEEEEEEEEE

b :int

c :array(float)

" m s

int

Example #3

Oz = Foie =] ~then
y x 2.0
else
Zec il Gy ==l e

T1(*x)(T2,T3,T4)
i
T3
T4

Random order

h :T1(x)(T2,float,T4)
XV,
y : float

y must be float since it is used in

an arithmetic operation involving 2.0,
hence T3 = float

The condition node
must be boolean and the then and else
nodes should be of the same type as

the if node

bool

T1(x) (T2, float,T4)

T2
float
T4

float

The return type of h must be

the same as the type of the if node,
ie. Tl = float

float(x) (T2, float,T4)
T2

float

T4

int

x must be int since it is

compared with integer constant 1,
i.e. T2 = 1nt

float(x) (int, float,T4)
int

float

T4

h :float(x)(int, float, float)
Xl
y :float

z - float

z must be float since the

result of the arithmetic operation is
of type float. Also the apply node
must be of type float

h :float(x)(int,float, float)
sy i

y :float

Ze s Eloait

Call to /i with the following
argument types: float, int, float
—> Type Mismatch

float(x) (int, float, float)

T'ype Constraints

Functuon Defimtions

If-Then-Else

Arithmetic Expressions

op must be an arithmetic
operator: + — *x /
T
el s

Comparisons

op must be a comparison
operator: < > = <= etc

Function Calls

Array Indexing

