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Abstract—The volume and frequency of new cyber attacks
have exploded in recent years. Such events have very com-
plicated workflows and involve multiple criminal actors and
organizations. However, current practices for threat analysis
and intelligence discovery are still performed piecemeal in
an ad-hoc manner. For example, a modern malware analysis
system can dissect a piece of malicious code by itself. But,
it cannot automatically identify the criminals who developed
it or relate other cyber attack events with it. Consequently,
it is imperative to automatically assemble the jigsaw puzzles
of cybercrime events by performing threat intelligence fusion
on data collected from heterogeneous sources, such as mal-
ware, underground social networks, cryptocurrency transac-
tion records, etc. In this paper, we propose an Automated
Threat Intelligence fuSion framework (ATIS) that is able to
take all sorts of threat sources into account and discover new
intelligence by connecting the dots of apparently isolated cyber
events. To this end, ATIS consists of 5 planes, namely analysis,
collection, controller, data and application planes. We discuss
the design choices we made in the function of each plane and
the interfaces between two adjacent planes. In addition, we
develop two applications on top of ATIS to demonstrate its
effectiveness.

I. INTRODUCTION

The volume and frequency of new cyber threats and
variants targeting the private sectors have exploded and
become critical concerns. In the meantime, government and
other public sectors are also facing unprecedented cyber
attacks, which may potentially undermine national security
and critical infrastructure [19]. It is estimated that the likely
annual cost to the global economy from cybercrime is more
than $400 billion in 2014 [14]. And, the number is projected
to reach $2 trillion in 2019 [15].

The staggering number of cyber crimes are able to evade
existing security measures, because they have complicated
workflows and involve multiple criminals and organizations.
For example, Try2DDos is a tool to perform distributed
denial of service attack (DDos). It was first released on a
French forum Underground konnekt in June, 2005. More
than one year later, the first public variant of this tool in
Spanish appeared on an Argentina hacker forum. From 2005
to 2008, this tool and its variants spread to China, Russia,
Guatemala, and Argentina, and many have used it to damage

a large number of networked systems [11]. Obviously, to
fully understand how Try2DDos evolved over the years and
who had been distributing this tool requires the combination
of binary code analysis, underground social analysis, etc.

However, current practices for threat analysis and in-
telligence discovery are still performed piecemeal in an
ad-hoc manner. Even though a modern malware analysis
system can dissect a piece of malicious code [8], it cannot
automatically identify the criminals who developed/released
it or relate other cyber attack events with it. Consequently,
it is imperative to automatically assemble the jigsaw puz-
zles of cybercrime events by performing threat intelligence
fusion on data collected from heterogeneous sources, such
as malware, underground social networks, cryptocurrency
transaction records, etc.

In this paper, we design an automated threat intelligence
fusion framework (ATIS) that can automatically extract all
threat intelligence from heterogeneous sources and correlate
them. To this end, ATIS consists of 5 planes from bottom to
top: i) collection plane, ii) analysis plane, iii) control plane,
iv) data plane and v) application plane.

The collection plane is the home of data crawlers. Anal-
ysis plane is composed of different analysis modules that
only analyze certain types of data. ATIS abstracts each
analysis model as a set of 〈input, output, relationship〉 3-
tuple. A logically centralized controller, which is responsible
for automatic data collection and intelligence discovery by
orchestrating collection and analysis modules and storing
discovered intelligence to data plane, is the brain of ATIS.
The data plane is used to store global knowledge base of
the collected and generated intelligence. Analysts can define
their own business logic and develop corresponding tools
that run in the application plane to perform threat analytics
based on their own needs.

The main contributions of this paper are:

• We design an automated threat intelligence framework
ATIS that consists of 5 planes, namely analysis, collec-
tion, controller, data and application planes. The brain
of ATIS is control plane that orchestrates modules in
other planes to automatically discover new intelligence;
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Figure 1. A motivating Example

• We implement a prototype ATIS system that integrates
various open source and in-house analysis platforms
including the Cuckoo malware analysis platform, an
in-house Bitcoin blockchain parser, etc.;

• To demonstrate the effectiveness of ATIS, we develop
two applications that rely on ATIS APIs for intelligence
discovery.

The rest of this paper is organized as follows. Section II
presents a motivating example to demonstrate why holistic
analysis that considers heterogeneous data is important to
understand cybercrime event. Section III illustrates the sys-
tem design of ATIS. Section IV describes implementation
of ATIS. Section V demonstrates the effectiveness of ATIS
by presenting two applications developed on top of ATIS.
Section VI describes related work inventing parallel to our
ATIS. Section VII concludes this paper.

II. A MOTIVATING EXAMPLE

In this section we present a motivating example to show
the complexity in modern cybercrime process, which clearly
shows the necessity of correlating apparently isolated intel-
ligence from heterogeneous sources for the understanding of
cyberattack events.

Recently, there were cases of siphoning off bitcoin by
changing bitcoin address while pasting at another loca-
tion [17]. Figure 1 shows how criminals change users’
bitcoin deposit address to steal their money. The flow of
carried out attack looks as follows: 1. An attacker publishes
malicious chrome extension in chrome web store. Recently,
BitcoinWisdom Ads Remover extension was tampered and
loaded with malicious javascript and published to the chrome
web store. 2. A victim downloads and installs add-on from
the web store. 3. A victim performs a transaction to transfer
bitcoin to a desired genuine bitcoin address. 4. Chrome
extension, such as BitcoinWisdom Ads Remover replaces
the bitcoin address while loading the DOM or while copying

the bitcoin address in browser through javascript code. After
successful transaction, bitcoin gets deposited into adver-
sary’s account. A careful analysis gives us information about
the author who published the extension into chrome web
store and revealed information about social profile of the at-
tacker on Reddit and Github. However, there is a possibility
that the author’s account got hacked and malicious person
published the tampered version of extension. In this scenario,
heterogeneous sources such as malicious chrome extension,
bitcoin addresses and social profiles of threat actor correlate
together to complete the story of how an attack was carried
out.

III. SYSTEM DESIGN OF ATIS

In this section, we present the design goals that ATIS
strives to meet. Then, we overview the high level architecture
of ATIS and illustrate the functionality of each plane and the
design choices we make.

A. Design Goals

Reuse Existing Analysis Systems. Existing analysis tools
are good at analyzing certain types of data. For example,
Cuckoo sandbox is the leading open source malware analysis
system, which executes malware samples in a simulated
environment, monitors system calls and automatically gen-
erates detailed static and dynamic analysis reports [10].
BitIodine is a tool for analyzing and profiling to extract
intelligence from the Bitcoin transaction records [20]. By
reusing existing analysis systems, ATIS will be able to
interlink relevant information from heterogeneous sources
and discover new intelligence.

Automated Intelligence Fusion. Given the ever increasing
volume of threat intelligence, the manual process of ex-
tracting key attributes and linking it with relevant data is
impossible for human analysts in timely manner. Therefore,
automatic processes are desperately needed to help analysts
utilize their time for value-added analysis.

Interoperability. Many existing threat intelligence analyt-
ics tools represent knowledge in proprietary format, which
is cumbersome to share. It is important to integrate standard
advanced threat sharing language to support interoperability
in sharing of new discovered intelligence. ATIS should
follow and support standard formats of representation such
as STIX [2], TAXII [7], OpenIOC [16] and YARA [6] to
share information.

B. Architecture Overview

Figure 2 shows an overview of the architecture of the
ATIS framework, which consists of 5 planes from bottom to
top: i) collection plane ii) analysis plane, iii) control plane,
iv) data plane and v) application plane. Collection plane
consists of autonomous crawlers and their corresponding
wrapper/parser. For example, a crawler for malware will
crawl from various sources to collect malware samples and
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Figure 2. ATIS Architecture Overview

can store them in its own database. Analysis plane includes
all sorts of analysis modules and their corresponding parsers.
For example, Cuckoo, which is an automated malware analy-
sis system, resides in the analysis plane. ATIS abstracts each
analysis module as a set of 〈input, output, relationship〉
3-tuple. A logically centralized controller that resides in
the control plane is the brain of ATIS. The controller
is responsible for automatic intelligence discovery by or-
chestrating all the analysis modules and storing discovered
intelligence to the data plane. Data plane stores a global
knowledge base of the collected and generated intelligence
information. Knowledge in ATIS is represented as a graph.
The application plane includes ATIS applications that utilize
the generated knowledge base to perform holistic threat
analytics.

Besides the 5 planes, ATIS also defines the communica-
tion interface between each adjacent pair of planes to enable
a reusable, scalable and flexible design.

C. Collection Plane

Collection plane consists of autonomous data crawlers,
which only care about crawling relevant threat feeds follow-
ing the controller’s commands. A typical cycle for a data
collector can be broken into 2 phases: i) collector determines
which data feeds provide relevant and valuable data and col-

lect the raw contextual data through autonomous crawlers;
and ii) collector stores the collected data in structured data
format.

D. Analysis Plane
Each analysis module is autonomous and it only cares

about analyzing certain types of data. ATIS abstracts each
analysis module as a set of 〈i, o, r〉 3-tuple, where i stands
for the type of input, o is the type of output, and r is the type
of the relationship between input and output. In ATIS, types
are not predefined. They are simply case-sensitive strings
that are provided by analysis module developers. This design
can make adding new types be a very simple task. We denote
the set of all possible input types as I , output types as O, all
known types in the system as the union of them T = I ∪O,
and all relationships as R.

Take the Cuckoo sandbox, an automated malware analysis
system, as an example. Cuckoo takes an file or a URL as
input and performs static and dynamic analysis on it. ATIS
abstracts Cuckoo as a set of 〈i, o, r〉 3-tuples:

{〈"windows-exe","ip","connect-to"〉, (1)
〈"windows-exe","string","has-string"〉, (2)

〈"windows-exe","md5","md5-is"〉, (3)
〈"pdf","md5","md5-is"〉} (4)
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Line (1) says Cuckoo can take a Windows executable file
as an input, and output what IP addresses the executable
file tries to connect. The relationship between the input and
output is ”connect-to”. Line (2) says Cuckoo can also report
what strings the executable file has. Additionally, the outputs
of an analysis module can also be represented as a set of 3-
tuple with the actual analysis values. Line (3) and (4) show
that Cuckoo relates an analysis value, MD5, with the original
input, which is an executable file or a pdf file. Obviously,
a comprehensive analysis system, such as Cuckoo, will be
abstracted as a set of hundreds or even thousands of 3-tuples
like this.

Not only an analysis system’s ability can be abstracted as
a set of 3-tuples, it also reports to the controller in a similar
format by replacing the input and output types with actual
values as follows:

{〈"18c323...","8.8.8.8","connect-to"〉, (1)
〈"18c323...","Hello!","has-string"〉} (2)

In these two examples, Cuckoo reports the analysis results
that executable whose MD5 is "18c323..." tries to
"connect-to" the IP address "8.8.8.8", and it also
has a string "Hello!".

E. Analysis-Control-Plane Interface

Since most existing analysis systems do not report their
results in this way, an analysis module-specific shim is
needed to translate the results to the required format and
forward to the controller. In addition, the shim is also
responsible for wrapping the existing analysis systems so
that they provide a consistent interface for the controller
to call. The interface consists of the following high level
operations:

i) CreateTask is used to create a new task. When calling
this function, the controller should send the to-be analyzed
data along. The analysis module returns a uniquely identi-
fiable attribute, MD5, SHA1 for file, email for a thread of
a forum, etc., using which the controller can retrieve the
results, or an error message if it cannot perform the task.

ii) ListTask is used to retrieve the list of tasks. The analysis
module returns objects of tasks as list, or an error message
if it cannot perform the task. Considering the number of
objects in the list can be huge, this query provides only
uniquely identifiable attribute of the object which can be
utilized to obtain detailed object.

iii) RetrieveTask is used to retrieve the result of a task. The
analysis module returns detailed result of a task by filtering
result with matching parameter, or an error message if it
cannot perform the task.

iv) ExistsTask is used to perform validation on the exis-
tence of a task. The analysis module returns a boolean value
based on filtering result of matching arguments, or a error
message if it cannot perform the task. It returns yes, if record
exists and no if it gets an empty set.

v) UpdateTask is used to update an existing task. The
analysis module returns a uniquely identifiable attribute,
MD5, SHA1 for file, email for a thread of a forum, etc.,
using which the controller can retrieve the results, or an
error message if it cannot perform the task or no record
exists.

vi) DeleteTask is used to delete an existing task. The
analysis module returns a uniquely identifiable attribute,
MD5, SHA1 for file, email for a thread of a forum, etc.,
with the proper message to understand the task was deleted
in a successful manner, or an error message if it cannot
perform the task or no record exists.

vii) Status is used to check status of an analysis module.
The analysis module returns status of the module, i.e. status
= active, disabled, or an error message if it cannot perform
the query.

F. Control Plane

A logically centralized controller resides in the control
plane. To orchestrate all the analysis systems for automated
intelligence discovery, the controller needs to know 1)
what analysis systems are available? and 2) what are their
abilities? To this end, it maintains all the analysis system
names, such as Cuckoo or WHOIS, and their addresses. It
also maintains the abilities of each analysis system, which is
represented as the set of all analysis system’s input-output-
relation 3-tuples.

To best utilize all the analysis system, the controller
also maintains a tree of all input types. Figure 3 shows a
part of the tree that is used in our implementation. Each
child in the tree is a subtype of its parent. For example,
"windows-exe" is a subtype of "executable".

Whenever there is a new piece of data, the controller
will send it to the analysis systems that can take this data
type as input by consulting the type tree. When an output
is generated, the controller stores it into the data plane. If
the output data can be further analyzed by other analysis
systems, the controller will automatically send the data
to them as well. It is this cascading effect that enables
automatic intelligence discovery.

In addition, whenever a new analysis system is plugged
into the system. The controller will check if there is any
data in the data plane that can be analyzed by this system.

G. Data Plane

The data plane stores a global knowledge base of the
collected and discovered intelligence. Given the heteroge-
neousness of the intelligence type and the systems that
generate them, the data plane needs to store and represent
knowledge in a suitable manner so that a holistic picture of
heterogeneous intelligence can be painted.

At a high level, the knowledge base can be viewed as a
graph, where each vertex is a data point that includes some
information about it, such as the type t ∈ T of the data
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"any-type"

"string" "binary"

"..." "hash" "url" "bitcoin-addr" "executable" "pdf" "..."

"md5" "sha1" "..." "windows-exe" "..."

Figure 3. A Part of the Tree of Input Types I in our Implementation

point and the actual value of it. Each edge in this graph is
labeled with a relationship r ∈ R and the name and version
of the analysis system that discovered the relationship, such
as "Cuckoo 2.0-RC1". By abstracting the analysis plane
outputs, the controller can easily obtain all the information
needed to form the graphical knowledge base at the data
plane.

H. Application Plane

Intelligence analysts can develop applications to perform
analytics on the knowledge base. Each application defines
its own application logic and communicates with the data
plane via the data-application-plane interface.

For instance, a ‘Searcher’ application can take analysts’
input and search related information in the knowledge base
and visualize the output. Such a ‘Searcher’ can search based
on the attributes of both vertex and edge.

The connected intelligence enables applications on new
topics and new methods on old topics as well. For example,
a ‘Malware Clustering’ application may not only take the
attributes of a malware into account but also considers its
relationships with other data points.

IV. IMPLEMENTATION OF ATIS

We implemented a prototype ATIS framework that inte-
grates various open source and in-house analysis platforms
including the Cuckoo malware analysis platform, an in-
house Bitcoin blockchain parser, an in-house social analysis
system [21], etc.

The autonomous crawling and analysis systems were
implemented in different programming languages. For ex-
ample, social webscrapper and analysis was built in JAVA,
HTML parser, Neo4j graph database, Apache Lucene library,
Jackson2 library. However, malware crawler and analysis
system was implemented Python, Flask, MySQL, MongoDB
etc. All modules are exposed as REST web services to
receive commands from the controller and send data to the
controller. The multithreaded controller was developed using
Python, Flask, RabbitMQ [4].

All discovered intelligence is stored in a Neo4j graph
database instead of relational database systems like MySQL,

since it has been found that graph databases work well on
highly connected data. A web-based management interface
is developed to show the potential of the system through
various applications by using Flask framework, Python, Cy-
toscape.js which queries to Data-Application-Plane interface
to provide required filtered data.

We also deployed ATIS on our Openstack. Each ATIS
module, including each analysis system, controller, knowl-
edge graph database and each application runs on a dedi-
cated Openstack instance with 8GB RAM.

V. EXAMPLE APPLICATIONS

In this section we present two applications we developed
on top of ATIS to demonstrate the effectiveness of ATIS.
Taking advantage of the features offered by ATIS the first
application, a searcher, considers all the nodes and rela-
tionships in the knowledge graph and returns search results
on the graph based on human analysts’ inputs, whereas
the second application, namely SocialSEAL, only considers
the relationships discovered by our in-house social analysis
module and generates results of social dynamics. At the time
of writing, the controller has orchestrated the analysis plane
to discover new intelligence and inserted more than 89,000
nodes from heterogeneous data sources and more than
230,000 relationships between nodes into the knowledge
graph of ATIS.

A. A Searcher Application

The searcher application provides a platform for human
analysts to carry out research queries, visualize relationships
between heterogeneous data nodes and understand how they
are correlated to get the insight of data, which is generally
not eminent by just looking at the data. Human analysts can
filter the data based on various different node types, node
attributions and node relationship hops.

For example, if human analysts want to find out
how the email address of cralu@gecad.ro is con-
nected with varoius cybersecurity events, they can sim-
ply input the email address in the search bar. In Fig-
ure 4, a blue node represents an email address while
a green node represents a file with its MD5 value. As
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Figure 4. A Searcher Application: Interconnection between cralu@gecad.ro and and darknode@oninet.es through malwares.

Figure 5. A Searcher Application: Events sharing Common Vulnerabilities and Exposures.

shown in Figure 4, ATIS has automatically identified that
many malwares has a connection to cralu@gecad.ro
and darknode@oninet.es. The searcher visualizes
that the email address of cralu@gecad.ro has con-
nections with more than 50 malicious files, while the
email address of darknode@oninet.es has con-
nections with more than 15 malicious files in our
knowledge graph. In addition, a human analyst can
easily identify from Figure 4 that several malwares

(e.g. 375687afa577c769de9b89f1e1449dc4 and
4b58f5f1622517c381ebc9544a380273) have con-
nections to both email addresses, suggestting that the two
emails are connected.

In another example, if human analysts want to find out
which cyber attack events have exploited the vulnerability
identified by CVE-2012-0158, they can simply input
the CVE number in the search bar. Figure 5, in which
a green node represents an event and a red node repre-
sents a vulnerability, shows that attack events ‘Dissecting
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Figure 6. SocialSEAL application: Visualization of underground social network where nodes are ranked by influence.

the Kraken’ [18] and ‘NormanShark-MaudiOperation’ [9]
exploited CVE-2012-0158. And, ‘Securelist RedOc-
tober’ [12] has a connection with CVE-2012-0158,
CVE-2010-3333 and CVE-2009-3129. Similarly, ‘WP
Operation Tropic Trooper’ [1] event has a connection with
CVE-2012-0158 and CVE-2010-3333 suggesting that
threat actors are likely to exploit multiple vulnerabilities at
the same time to increase their success rate.

B. SocialSEAL Application

SocialSEAL is an application developed on top of ATIS
that only cares about the relationships discovered by our in-
house social analysis system. SocialSEAL is a great example
to show that even though the ATIS knowledge graph main-
tains a global and comprehensive view of all intelligence
discovered by all sorts of autonomous systems from the
analysis plane, the application developers can define their
own business logic to further analyze the intelligence.

SocialSEAL defines a suite of metrics to rank users
and groups based on user activeness, user influence, group
activeness, and group influence. Figure 6 shows the nodes
in the knowledge graph ranked by their Influence. The top
filters provide the analysts with the controls to change the
metrics or weights of the parameters used in the influence
and activeness computation. The variation in the User/Group
node size gives an intuitive idea of the qualified influence
value of a user or group. The left-hand side legend suggests
the color of different groups presented in the graph. The
nodes are also color-coded to indicate which group they be-
long to. The yellow links represent User-User relationships
and maroon links represent User-Group relationships. On

the sidebar, both the search results and the users/groups in
the knowledge graph ranked by their influence scores are
shown.

On clicking any user or group node in the graph, So-
cialSEAL takes the analyst to a page which shows just
the social circle of a threat actor and information from the
profile such as photo, location, interests etc. Figure 7 shows
the profile of the threat actor in the dataset which displays
security-related terms such as zombie, crack, hack, rootkit,
spam, exploit, attack etc. being used frequently by this actor.
It also provides the count of following and followed users
to understand the influence of the actor in the community.

VI. RELATED WORK

The community interest in threat intelligence analysis
and sharing platform has continuously growing throughout
the years. Magee et al. presented a collective of threat
intelligence gathering system [13]. Their system can report
threats to network administrators in a plurality of threat
feeds, including for example malicious domains, malicious
IP addresses, malicious e-mail addresses, malicious URLs
and malicious software files.

Beaver et al. proposed a generic threat assessment ap-
proach that provides a computational means for merging
multi-modal data for the purpose of assessing the presence
of a threat and negated the need for relying heavily on
human analysis to both combine any available data and draw
conclusions about the probability of a threat [3].

MITRE also presented a similar system called Collabo-
rative Research Into Threats, which combines an analytic
engine with a cyber threat database that not only serves as
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Figure 7. SocialSEAL application: Profile detail of a user

a repository for attack data and malware, but also provides
analysts with a powerful platform for conducting malware
analyses, correlating malware, and for targeting data. The
hierarchical structure provided by the system gives analysts
the power to ’pivot’ on metadata to discover previously
unknown related content [5].

VII. CONCLUSIONS

In this paper, we presented the design and implementation
of an automated threat intelligence fusion framework ATIS
that is able to take heterogeneous data into consideration and
discover new intelligence from apparently isolated cyberat-
tack events. To this end, ATIS consists of 5 planes, namely
analysis, collection, controller, data and application planes.
We discussed the design choices we made in the function of
each plane and the interfaces between two adjacent planes.
In addition, we developed two applications on top of ATIS
to demonstrate its effectiveness.
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