
1

Automatically Mitigating Vulnerabilities in Binary
Programs via Partially Recompilable

Decompilation
Pemma Reiter∗, Hui Jun Tay∗, Westley Weimer†, Adam Doupé∗, Ruoyu Wang∗, Stephanie Forrest∗

∗ Arizona State University, † University of Michigan

✦

Abstract— Vulnerabilities are challenging to locate and repair, espe-
cially when source code is unavailable and binary patching is required.
Manual methods are time-consuming, require significant expertise, and
do not scale to the rate at which new vulnerabilities are discovered. Au-
tomated methods are an attractive alternative, and we propose Partially
Recompilable Decompilation (PRD) to help automate the process. PRD
lifts suspect binary functions to source, available for analysis, revision,
or review, and creates a patched binary using source- and binary-level
techniques. Although decompilation and recompilation do not typically
succeed on an entire binary, our approach does because it is limited to
a few functions, such as those identified by our binary fault localization.

We evaluate the assumptions underlying our approach and find that,
without any grammar or compilation restrictions, up to 79% of individual
functions are successfully decompiled and recompiled. In comparison,
only 1.7% of the full C-binaries succeed. When recompilation succeeds,
PRD produces test-equivalent binaries 93.0% of the time.

We evaluate PRD in two contexts: a fully automated process incor-
porating source-level Automated Program Repair (APR) methods; and
human-edited source-level repairs. When evaluated on DARPA Cyber
Grand Challenge (CGC) binaries, we find that PRD-enabled APR tools,
operating only on binaries, perform as well as, and sometimes better
than full-source tools, collectively mitigating 85 of the 148 scenarios, a
success rate consistent with the same tools operating with access to the
entire source code. PRD achieves similar success rates as the winning
CGC entries, sometimes finding higher-quality mitigations than those
produced by top CGC teams. For generality, the evaluation includes two
independently developed APR tools and C++, Rode0day, and real-world
binaries.

1 INTRODUCTION

F Ixing software bugs is challenging when vendor sup-
port is unavailable, source code is not provided, or

rebuilding the software from source is infeasible. In these
cases, bugs must be mitigated at the binary level, which
is a tedious, complicated, and error-prone task that does
not easily scale to the number of bugs plaguing today’s
software. At the binary level, the most compelling bugs
are security vulnerabilities, which are important to address
quickly after disclosure to reduce attack and exploitation.

One approach to this challenge is Automated Program
Repair (APR). Despite active development on many differ-
ent tools and techniques, most APR methods today operate
only on source code [1]. Thus, an appealing alternative

would lift the entire binary to source, to be analyzed,
modified, and then recompiled to generate a patched binary.
Unfortunately, current decompilation tools have scalability
issues [2] or focus on readability rather than recompil-
ability [3]–[5], often producing inaccurate or uncompilable
results when applied to a whole binary [2].

Instead, this paper presents a hybrid approach to APR
centered on the idea that for most (if not all) binary pro-
grams, partial analysis is sufficient for binary repair. Several
insights guided our approach: fault localization need only
identify a small set of functions relevant to the vulner-
ability; decompilers can lift a small set of functions and
compatible types to recompilable source code; binary-source
interfaces and binary rewriting can transform them into test-
equivalent binaries, even when tools fail for full binaries;
the set of decompiled binary functions provides sufficient
context to enable source-level analyses and transformations,
even when those methods operate only on source.

Practically, we present an effective mechanism that con-
solidates partial analysis content to achieve automated bi-
nary patching. To our knowledge, there are no such existing
tools, partly because their underlying techniques are labori-
ous, i.e., generating compatible binary content from source,
altering compiled binaries with that content, and ensuring
that the result remains executable are all challenging. Our
fully functional prototype mitigates these difficulties by
automating the burden of manually patching source into
binaries. Specifically, it analyzes multiple abstractions and
generates binary-source interfaces which enable the use of
high-level source code to patch binaries. In this context,
only the patched function offset and its referenced types
and symbols (functions and variables) need recovery, sig-
nificantly reducing the requirement of complete and sound
type inference on binary code, an open research problem.
Our source-based, binary-source patching method is called
Partially Recompilable Decompilation (PRD), and its source-
based APR-compatible extension to automated binary repair,
BinrePaiReD.

Unlike reassemblers or binary recompilers, which oper-
ate on low-level software abstractions, PRD enables source-
level analyses by leveraging the output of decompilers. Such
output can be produced by automated decompilers, human

experts, or a combination (e.g., experts editing decompiler
output). While full decompilation refers to the complete de-
compilation of all functions local to a binary, we say a de-
compilation is partial when only a subset of binary functions
are decompiled and compatible types recovered. This design
choice mitigates some of the weaknesses and limitations of
current decompilers and enables source-only analyses on
binary code before decompilation achieves perfection.

PRD tackles the analytical and engineering challenges
posed by source-level binary patching, with the objective
of producing binaries with the same executional qualities as
the original. This includes the ability to call and use symbols
from the original binary from freshly compiled functions,
accomplished by PRD via binary-source interfaces, and vice
versa. Instead of recompiling (unavailable) source, PRD
compiles decompiled functions (that may have been mod-
ified at the source level) and binary-source interfaces to
produce binary patch content (PRD decompiled code). Since
compilers do not support combining new content with non-
object binary content, PRD links and locates new binary
patch content and overwrites the original buggy function
with a custom detour to a binary-source interface.

Our evaluation focuses on PRD applicability to APR,
generality to real-world vulnerabilities, other languages
(C and C++ x86), performance constraints, and the as-
sumptions. Previous evaluations of decompiler output con-
strained source code by restricting grammar and types [2].
We evaluate decompiled code’s recompilability and behav-
ioral consistency without these restrictions. Because APR
depends on fault localization, we study its effectiveness at
identifying functions relevant to vulnerabilities. Our eval-
uation includes two independently developed and evalu-
ated APR tools (Prophet [6] and GenProg [7]), and uses
off-the-shelf tools (e.g., Hex-Rays and GCC). Our datasets
include the DARPA Cyber Grand Challenge (CGC) [8],
Rode0Day [9], and C and C++ programs from the MITRE
CVE. Surprisingly, these APR tools performed well on the
datasets despite being restricted to just a small set of func-
tions, both for target repair locations and as sources of code
for the repairs. Our implementation is extensible to other
architectures and stripped binaries, assuming decompiler
support.

To summarize, the main contributions of this paper are:

• PRD: A system to support repair of binaries using
high-level source code when the complete source is
unavailable for recompilation.

• The fully functional PRD prototype, the first to support
source-level patching of a binary, including a descrip-
tion of the technical implementation

• An empirical validation of the individual assumptions
that guided PRD’s design: (1) that partial decompilation
usually succeeds when full decompilation is infeasible;
(2) that recompilation of decompiled functions usually
produces test-equivalent binaries; and (3) that coarse-
grained fault localization can localize faults to a small
set of relevant functions. In particular, we find that
even with no special grammar or compilation restric-
tions, 79.1% of individual functions can be successfully
decompiled and recompiled (when only 1.7% of full
binaries succeed). When recompilation succeeds, PRD

produces test-equivalent binaries 93.0% of the time. Our
coarse-grained fault localization method works well,
containing the relevant function in 299/316 cases.

• PRD generalizes to multiple languages (C and C++) and
compilers (Clang and GNU) with no significant impact
to performance.

• An end-to-end evaluation of BinrePaiReD’s ability to
apply source-based APR tools to mitigate vulnerabili-
ties in CGC binaries. We find that two APR tools, when
used with PRD, mitigate vulnerabilities with success
rates comparable to, sometimes exceeding, these same
tools operating on the full source. They collectively
mitigate 85 of 148 unique defects (20 that the winning
cyber-reasoning system failed to patch) and provide
code that humans can analyze and amend.

To further reproducible science, our prototypes, datasets,
and our experimental results are available at https://github.c
om/AdaptiveComputationLab/FuncRepair.

2 BACKGROUND

We briefly describe the techniques PRD uses to analyze and
manipulate binary content, localize, and repair faults.

2.1 Binary Decompilation and Rewriting.

A binary program, or binary, refers to a structured executable
file composed of encoded binary instructions. Disassembling
is the process of lifting binary instructions to assembly;
decompilation is the process of lifting lower-level abstrac-
tions (e.g., assembly) to high-level representations, (e.g.,
source). Since information about control flow structures,
prototypes, variable names, and types is lost during com-
pilation, decompilers must infer this content [5], [10], [11].
Such inference is unsound, often leading to unreadable
output, incorrect results, or outright failures. Binary rewriting
directly modifies a compiled binary file, retaining its ability
to execute [12]. PRD uses a binary rewriting strategy that
appends freshly compiled content to an existing binary,
overwriting the original binary function with instructions
to detour execution to the new content (Section 4).

2.2 Fault Localization.

Fault localization (FL) finds likely locations of a vulnerability
or bug by analyzing a program, dynamically or statically. In
Spectrum-Based Fault Localization (SBFL), program spectra
(characteristics) are obtained through analysis and used to
identify likely locations of the fault. Spectra can include
code coverage, data- or information-flow [13], [14], call
sequences [15], or program counter samples [16]. SBFL
produces suspiciousness scores and ranking (risk evalu-
ation) [17] but does not consider historical development
information [18]. To locate vulnerabilities, SBFL maps lower-
level code elements, like statements and variables, to their
execution, then applies metrics. Most methods require ac-
cess to source, but we use only the binary and available test
cases, calculating suspiciousness scores using multiple SBFL
metrics. Specifically, we adapted a hybrid FL method, Rank
Aggregation Fault Localization (RAFL) [19] to consolidate

2

https://github.com/AdaptiveComputationLab/FuncRepair
https://github.com/AdaptiveComputationLab/FuncRepair

the SBFL metrics using weighted ranks to identify the top-
K (35%) suspicious functions [20]. We refer to our approach
and its output as coarse-grained fault localization (CGFL).

For our purposes, CGFL does not need to be as precise
as many FL applications, i.e., it does not need to pinpoint
the exact lines of faulty code. To succeed, we only need to
identify a set of relevant (likely buggy) functions. Although
we use SBFL with function spectra, CGFL could leverage
other FL methods, e.g., those tailored to specific vulnerabil-
ity classes [21], assuming that the underlying mechanisms
do not require access to source code and can successfully
identify a set of suspicious functions. Similarly, if a vul-
nerability has already been disclosed and fixed in another
version of the code, then the changed methods could replace
CGFL.

2.3 Automated Program Repair.
Automated program repair (APR) methods generate
patches for defects in software with minimal or no human
intervention [22]. There are many popular methods (Gaz-
zolla et al. provide a survey [23]), but most have adopted
a search-based approach, defining transformation operators,
e.g., different flavors of mutation, to manipulate existing
code, and using test suites to validate repair correctness.
Other methods use formal semantics either alone or in
combination with mutation-based search. Recently, machine
learning (ML) approaches based on neural machine trans-
lation [24] or large language models [25] have prolifer-
ated. Most current ML models require perfect fault location
(source code line or function), and they are not appropriate
for binary repair because the models are overwhelmingly
trained on source code or natural language. However, PRD
could be used in conjunction with ML tools, which would
require training or fine-tuning with decompiled source code
to improve effectiveness. We evaluate PRD using two in-
dependently developed mutation-based source-code repair
tools: Prophet [6], GenProg [7], [26], and its deterministic
variant “AE” [27].

Listing 1. Decompiled code for KPRCA_00018’s cgc_split, generated
by the Hex-Rays decompiler. Low readability of decompiled code does
not limit APR tools.

1 int cgc_split() {
2 int v0; int result; char v2; card_t *v3; card_t *v4;
3 squarerabbit_t *split_srabbit; squarerabbit_t *srabbit;
4 int i; i = 0;
5 for(srabbit = g_srabbit; srabbit->player_finished && i <

cgc_split_len(); srabbit = &split_hand[v0])
6 v0 = i++;
7 if(!srabbit->double_or_split || !cgc_can_split(srabbit))
8 return -1;
9 v2 = g_srabbit->split_len;

10 g_srabbit->split_len = v2 + 1;/*BUG*/
11 if(v2 > 1) return -1; /*BUG*/

3 MOTIVATING EXAMPLE

To motivate our approach, consider KPRCA_00018

(Square_Rabbit) from the DARPA CGC dataset, a casino-
inspired game with an integer overflow vulnerability that
crashes the program. Let’s assume we need to prevent
crashes, but the software is no longer supported, the source
is unavailable, and direct binary fault localization and
patching are not feasible [28]. However, we have recovered
some tests for the buggy binary (100 functional, one

Fig. 1. Stages of PRD with stage-consistent (color)s.

Generate
Binary-Source

interfaces

Input
relevant binary

functions

Decompile
binary functions Integrate

new content
into binary

Analyze and
Modify

Decompiled
functions

Produce
new binary

content

(a) Description of input requirements and high-level goals. Note that, at a minimum,
vulnerability-relevant binary functions need to be identified for our automated binary
patching framework.

PRD
binary

A

binary

suspicious
functions

A

X

Partial
Recompilation

ii

A'Binary
Rewriting

iii
Partial

Decompilation

i

PRD
decompiled code

C

(b) The PRD method: i⃝partial decompilation (blue), ii⃝partial recompila-
tion (green), iii⃝binary rewriting (rose).

crash-inducing) and have access to a source- and test-based
APR tool. Our APR tool does not require the source code
to be readable, but it must recompile and be test-equivalent
to the original. To accomplish this, we assume Hex-Rays
as our decompiler. First, we apply Hex-Rays to the binary
which fails to generate recompilable output for all functions
(see [29]). Although we cannot decompile the full binary,
we can use PRD. By recovering compatible type definitions
and decompiling functions individually, we can generate a
large number of recompilable (87) and test-equivalent (76)
functions from the binary.

Next, we localize the likely source of the problem to a
small set of 14 suspicious functions from 90 total in the bi-
nary (fault localization), including the vulnerable cgc_split

function, which is tied for the most suspicious.
The next step is generating a patched binary that pre-

serves the expected functionality and repairs the vulner-
ability. We decompile the suspicious function set, recover

Fig. 2. The four stages of BinrePaiReD with PRD stage-consistent
(color)s: 1⃝CGFL - identifies a set of relevant binary functions; 2⃝partial
decompilation - generates PRD decompiled code, i.e., binary-source in-
terfaces and decompiles binary functions; 3⃝source-level repair (APRprd)
- algorithms seeded with decompiled functions search for repairs;
4⃝partial recompilation and binary rewriting - generates a repaired PRD

binary when APR identifies a repair. Each stage’s output is formatted in
same style as its label.

APRprdPartial
Decompilation

suspicious
functions

CGFL

1

T

3

repaired
PRD

binary

generate

4

B'

2

X
binary

B

test suite

PRD
decompiled code

C

validate

X

repaired
source code

C

3

compatible types (partial decompilation), and transform
them, using PRD, into source that is both recompilable and
compatible with binary rewriting via binary-source inter-
faces. To verify that the resulting binary is test-equivalent
to the original, we recompile the generated code (partial
recompilation), construct a new binary (binary rewriting),
then check the result for test equivalence. Finally, we ad-
dress the vulnerability by repairing the decompiled source,
either manually or automatically with APR.

Listing 1 shows the buggy cgc_split function as decom-
piled by Hex-Rays (bug appears on lines 10–11: increment-
ing g_srabbit->split_len results in an integer overflow).
Our APR tools successfully identify a developer-equivalent
patch (i.e., moving 10 after 11). Altogether, we obtain the
ease and benefit of source-level APR, applied to a binary.

4 PARTIALLY RECOMPILABLE DECOMPILATION

Figure 1 depicts PRD’s architecture. PRD takes as input
a small set of binary functions, which are processed in
three interdependent stages, each customized to preserve
the executional integrity of the original binary. CGFL iden-
tifies the relevant set of suspicious binary functions. Partial
decompilation generates source code that is structured to fa-
cilitate recompilation (application binary interface, compiler
idiosyncrasies, etc.), and partial recompilation creates the
corresponding binary patch (PRD recompiled code). Finally,
binary rewriting integrates new binary content into the ex-
isting binary, by appending a new segment and overwriting
original functions with custom detours. PRD succeeds if
its output binary is test-equivalent to the original binary
(assuming no source-level modifications).

Our prototype implementation operates on x86
statically- and dynamically-linked Linux ELF executables.
The following subsections discuss key PRD concepts:
coarse-grained fault localization, partial decompilation, par-
tial recompilation, and binary rewriting.

4.1 Coarse-Grained Fault Localization (CGFL)

To reiterate, we do not need to our FL to be fully precise
(i.e., identify specific lines of suspicious code). Rather, we
require FL that can identify a small set of functions which
are likely to contain the vulnerability. Our approach to FL,
called CGFL, focuses on this minimal requirement.

Although PRD operates on a small number of impli-
cated functions, binary repair cannot succeed unless the FL
includes the vulnerable functions. This context leads to a
distinct set of requirements from those of most FL meth-
ods (Section 2.2): (r1.1) does not require source code or
the ability to recompile, (r1.2) prioritizes functions for de-
compilation, and (r1.3) identifies vulnerable functions. For
performance, we add two more requirements: (r1.4) avoids
functions that cannot support our detouring and (r1.5) min-
imizes overhead to obtain function set. Later analyses can
use finer-grained FL to pinpoint suspicious statements.

CGFL uses Valgrind’s [30] callgrind to trace the program
under different unit tests (satisfying r1.1–2,r1.5). Valgrind
can efficiently provide function level traces, allowing us to
identify function-level spectra. To address requirement r1.4
(detour support), we implemented a screening algorithm

that reduces the probability of overruns and, for statically-
linked programs, culls standard library functions. To avoid
detour overruns, we set a minimum function size that
supports at least four references per detour. This eliminates
very small functions with large calltrees (Section 4.2.1).

For each such function, we calculate suspiciousness
scores using five state-of-the-art SBFL metrics (Taran-
tula [31], Ochiai [32], op2 [33], Barinel [34], D2 [35]). Using
these scores, RankAggreg identifies the top-K suspicious
functions [20] (satisfying r1.3: This implicates vulnerable
functions in the top 35% 94.6% of the time, which is
sufficient for our purposes and is consistent with current
decompiler capabilities [2]). This generates CGFL, a list of
suspicious functions consolidated from the individual SBFL
metrics. Using CGFL can reduce the size of search space by
up to 95% in later analyses.

4.2 Partial decompilation
This section discusses partial decompilation, including what
is required to use its output in PRD and salient implementa-
tion details of our prototype. Figure 3 outlines the high-level
execution flows that PRD enables between binary content
and PRD recompiled code.

4.2.1 Constraints on PRD recompiled code
Because the original binary headers and tables are left intact,
standard interpreter initializations (constructors, symbol
resolutions and relocations) are bypassed in PRD recompila-
tion. We ensure that the PRD fulfills these two requirements:
(r2.1) does not require the interpreter and (r2.2) references
global, local, and external symbols in the original binary.

4.2.2 Binary-Source Interfaces
We analyze both the original and decompiled content, then
generate two complementary binary-source interfaces: un-
bound symbol and detour. Shown in Listing 2, these interfaces
allow decompiled code to reference symbols (like callbacks)
from the original binary, regardless of binding state, by
address (respective table entry or relative location). The un-
bound symbol interface manages dynamic interactions with
symbol tables, procedure linkage tables (PLT), relocation
tables (REL), and global offsets tables (GOT). Note, position-
independent code (PIC) requires the ebx register to contain
the GOT value, used during calls via PLT GOT pointers.
In essence, this interface wraps callbacks with code that
enables the expected dynamic linking behavior for function
symbols. Similarly, the detour interface manages all required
symbols and registers used in the function and serves as the
entry point for the recompiled function. Binary rewriting
adds instructions to resolve the relative locations of these
symbol functions and variables to their offset or table entry
(see Section 4.4). Together, they ensure that the resulting
recompiled code executes in a manner consistent with the
original.

Listing 2 shows an example detour interface with added
void* parameters, harboring values for ebx and three ref-
erences: cgc_receive, cgc_memcpy, and cgc_calloc. Because
cgc_memcpy and cgc_calloc are local symbols at computable
locations, they can be invoked as callbacks from the decom-
piled code. Symbol cgc_receive has an unknown binding

4

state; so, we create an unbound symbol interface to allow
the decompiled code to call it using its table entry (PLT).
In Listing 2, lines 8 of the original binary’s function call
and lines 10-13 of the detour interface have diverged,
where det_cgc_read_line has added four void* parame-
ters). Thus, a single jump instruction, e9, will not suffice for
detour F’3, the instructions overwriting the original binary
function (F3).

Divergence from the original function call to the detour
interface has some implications: (i1) our detour interface is
not compatible with the original function call; (i2) the stack
state is not consistent upon return from decompiled func-
tion; (i3) added symbol references incur a byte-cost which
may overrun the original function. Section 4.4 explains how
PRD’s binary rewriting phase handles (i1) and (i3). PRD
decompilation addresses (i2) by inserting stack-correcting
inline assembly before the detour interface’s return. Rele-
vant to (i3), when multiple functions are decompiled and
aggregated, the minimum set of required references for any
entry function is the union of its calltree’s references.

This approach satisfies requirements r2.1 (the binary-
source manages references) and r2.2 (the decompiled code
uses the original binary’s symbols).

Listing 2. Example binary-source interfaces for a detour interface
(Bin-Srcdec(det_cgc_read_line)) and local symbol callbacks
(Bin-Srclocal(cgc_calloc,cgc_memcpy)).

1 // Bin-Src(local) : typedef function ptr + local variable
2 typedef void * (*pcgc_memcpy)(void *, const void *,

cgc_size_t);
3 pcgc_memcpy cgc_memcpy = NULL;
4 // Bin-Src(local) : typedef function ptr + local variable
5 typedef void * (*pcgc_calloc)(cgc_size_t);
6 pcgc_calloc cgc_calloc = NULL;
7 // Decomp : Decompiled Function Declaration
8 cgc_ssize_t cgc_read_line(int fd, char **buf);
9 // Bin-Src(dec) : Detour Interface

10 cgc_ssize_t det_cgc_read_line(
11 /* Bin-Src params*/ void* EBX, void* mycgc_receive,

void* mycgc_calloc, void* mycgc_memcpy,
12 /* Decomp params */ int fd, char * * buf
13){
14 cgc_ssize_t retValue;
15 origPLT_EBX = (unsigned int) EBX;
16 z__cgc_receive = (pcgc_receive)(mycgc_receive);
17 cgc_calloc = (pcgc_calloc)(mycgc_calloc);
18 cgc_memcpy = (pcgc_memcpy)(mycgc_memcpy);
19 retValue = cgc_read_line(fd, buf);
20 asm("mov -0xc(%ebp),%eax\n\t"
21 "mov -0x4(%ebp),%ebx\n\t" "nop\n\t"
22 "add $0x14,%esp\n\t" "nop\n\t"
23 "pop %ebx\n\t"
24 "pop %ebp\n\t"
25 "pop %ecx\n\t"
26 "add $0xc,%esp\n\t"
27 "push %ecx\n\t"
28 "ret\n\t"
29); /* stack-correcting ASM - removes Bin-Src params*/
30 return retValue;
31 }

Listing 3. Example binary-source interfaces for external symbol
callbacks (Bin-Srcplt(cgc_receive)), continued from Listing 2.

1 // Bin-Src(plt) : PLT register
2 unsigned int origPLT_EBX = NULL;
3 // Bin-Src(plt) : typedef function ptr
4 typedef int (*pcgc_receive)(int s_0, int s_1, int s_2, int

s_3);
5 pcgc_receive z__cgc_receive = NULL;
6 // Bin-Src(plt) : Unbound Symbol interface
7 int cgc_receive (int s_0,int s_1,int s_2,int s_3) {
8 pcgc_receive lcgc_receive = z__cgc_receive;
9 int ret;

10 unsigned int localEBX;

11 unsigned int localorigPLT_EBX = origPLT_EBX;
12 asm ("movl %[LOCALEBX],%%ebx\n\t"
13 "movl %%ebx,%[PLT_EBX]\n\t"
14 :[LOCALEBX] "=r"(localEBX)
15 :[PLT_EBX] "r"(localorigPLT_EBX)
16 : "%ebx");
17 ret = lcgc_receive(s_0,s_1,s_2,s_3);
18 asm ("movl %%ebx,%[LOCALEBX]\n\t"
19 :[LOCALEBX]"=r"(localEBX));
20 return ret;
21 }

PRD recompiled code

PRD recompiled code

PRD recompiled code

PRD recompiled code

detour
F'3

32

PLT 4,85

LI
B
(x
)

6

7

9

1213

(2) Detour-Decomp Entry

(3b) Decomp to Local Symbol

(4) Decomp Exit Return to Caller

Decomp(F3)

(3a) Decomp to Unbound Symbol

PRD Binary

PRD
recompiled

code

original
binary content

detour
F'3

F1
F2

PLT

1

FN

(1) Call to Replaced
Function

Bin-Srcdec(F3)

Bin-Srcplt(x)

11

F1

F2 Bin-Srcdec(F3) Decomp(F3)

Decomp(F3)

Decomp(F3)

10 Bin-Srclocal(F1)

Fig. 3. Program Execution Flows for patching F3, with each flow between
original and new binary content outlined by way of numbered arrows.
F1...N refer to the original binary’s functions and its PLT. PRD recompiled
code consists of Decomp(F3), the decompiled content for function F3,
and Bin-Src..., binary-source interfaces. Subscripts dec specify the de-
tour interface to decompiled function, plt the unbound symbol interface
for a dynamically resolved symbol, and local the interface for a local
symbol, whose location is resolved. See Listings 2-3 for code examples.

4.2.3 Decompilation.
Here, we outline our use of decompilers and their output.

Function-specific Decompilation. For PRD to support
binary repair, not all binary functions need to be decom-
piled. Instead, we apply decompilers to a relevant subset
generated with CGFL (Section 4.1). The decompiled output
is left intact, with the exception of a small set of decompiler-
specific keyword substitutions required for APR and sub-
sequent recompilation (e.g., replacing DWORD with unsigned

int).
Compatible Type Recovery. Similarly, it is not necessary

to recover exact types from the binary, only compatible
types are needed. For example, a struct foo may contain
many fields with different types, but only one of the fields
(e.g., foo.bar where bar is an unsigned int) is used in a
decompiled function. PRD only needs to know the offset
and inferred type of bar. This significantly reduces the re-
quirement for complete and sound type inference on binary

5

code, an open research problem. To accomplish compatible
type recovery, we leverage the decompiler’s type inference
system to reconstruct the necessary types. Notably, although
decompilers can fail to recover all types, PRD can succeed
if only the referenced compatible types are defined. Since
types can be nested, PRD decompilation resolves the defini-
tion order for the compatible type definitions.

4.2.4 Implementation
Our prototype is implemented in Python with LIEF [36] and
uses the Hex-Rays Decompiler, supplemented with Ghidra
to support C++-decompilation when Hex-Rays recompila-
tion fails. The decompilers generate the initial decompila-
tion, and our custom IDAPython script obtains correspond-
ing local type and function declarations.

PRD substitutes common primitives such as _DWORD
and decompiler-specific definitions, resolves the definition
order for types, generates the required binary-source inter-
faces and resolves the minimum set of required symbols.
These rule-based transformations are a best-effort heuristic
to produce informative decompilation. To reorient the stack
to support detouring with references, we analyze the initial
recompiled PRD source, generate inline assembly that re-
constructs the stack on detour exit, then inserts the assembly
snippet in the detour interface (see lines 20-28 of Listing 2).

4.3 Partial Recompilation

Partial recompilation recompiles PRD decompiled code re-
specting r2 (Section 4.2.1). Because our binary rewriting
strategy appends new binary content, it must operate even if
the memory address of the new content is not known in ad-
vance. To satisfy these requirements, PRD creates position-
independent, statically linked content. Although PIC is ubiq-
uitous, support for both static linking and PIC in a single
shared object is recent (≥ GNU 8.4.0) and not behaviorally
consistent across all compilers. We generate our object with
these flags and custom linker script, placing all sections
in a single segment. While default partial recompilation
uses GCC, we support APR profiling (which often leverages
libc functions not always available in the original binary)
with dietlibc, a small-footprint libc. Our approach supports
executional requirements and r2.1.

4.4 Binary Rewriting

Binary rewriting composes the original binary and PRD-
decompiled source into a single binary that executes cor-
rectly. Our prototype analyzes, extracts, adds, and manip-
ulates binary content to satisfy the requirements r2.1-2. To
handle (i1) (Section 4.2.1), we overwrite the existing binary
function by adding instructions that, if any symbols are
required, change the effective function call to align with the
detour interface, and a jump to the detour interface, i.e.,
detour F’3 from Figure 3. To accomplish this, we analyze
the binary content to generate instructions for each required
reference, resolving each symbol (function or variable) to its
respective offset or table entry, adhering to calling conven-
tion. These added instructions incur a byte-cost for each ad-
ditional reference which may overrun the original function
(Section 4.2.2) (i3).

5 EXPERIMENTAL SETUP

Our evaluation of PRD and its application in APR (Bin-
rePaiReD) includes evaluations of underlying assumptions,
end-to-end fully automated scenarios, and two real-world
case studies (Section 6.5.2). Specifically, our evaluation ad-
dresses the following research questions:
RQ1. Does CGFL identify function(s) relevant to a given

vulnerability?
RQ2. Without any restrictions, how often is decompiled

code recompilable?
RQ3. Is decompiled code behaviorally consistent to origi-

nal binary functions?
RQ4. How effective is BinrePaiReD at mitigating vulnera-

bilities?
Case Study: Generality. Does PRD generalize to real-

world vulnerabilities, other languages, and perfor-
mance constraints?

Next, we describe our datasets and experimental setup.

5.1 Benchmark Datasets

Table 1 shows the four benchmark datasets used in the eval-
uation: DARPA Cyber Grand Challenge C binaries (CGC-C)
and C++ binaries (CGC-C++); Rode0day 19.11 (Rode0day); and
vulnerable, real-world programs (CVE Case Study).

5.1.1 CGC-C and CGC-C++

The DARPA 2016 Cyber Grand Challenge (CGC) provides a
dataset of challenge binaries (CBs), each containing realistic
vulnerabilities, and a testing framework. We derived our
CGC datasets from a Linux variant, trailofbits [37], verified
these CBs using a robust variant of its testing environ-
ment: Python3, instrumentation support, extended signal
handling. This identified 110 valid CGC CBs (100-CGC-C)
and 10-CGC-C++), each with at least nine passing positive
and one negative tests (defect scenario). We consider targets
for each CB, i.e., a set of relevant functions for decompila-
tion, totaling 190 as some binaries have multiple vulnerable
functions.

5.1.2 Rode0day

Rode0day 19.11 inserts hundreds of bugs into Linux
binaries, each a collection of stripped binaries and example
test inputs. We recompile to ensure that symbol names
exist in the binary and generate unit tests from provided
inputs (see Table 1). For our evaluations, we consider both
functions and the injected bugs.

5.1.3 Real-World Case Study

We also evaluated the viability of manually generating
source-level changes on real-world programs. These three
programs were not specifically curated for APR or binary
analysis, two taken from public security vulnerabilities
(CVEs), podofopdfinfo [38] and jhead [39], and a raw bi-
nary obtained from a docker image, /bin/bash. Because the
vulnerable methods are local symbols, PRD can repair the
binary, a more difficult task than repairing libraries.

6

TABLE 1
Evaluation Dataset Features. Release, number of binaries, number of
defect scenarios, average and minimum number of behavioral (pos)
tests, compiler-toolchain and source language, average lines of code
(LOC). Line coverage % values are reported for average, std-dev, and

median for Curated Datasets and CGFL.

Curated Dataset Real-World Case Study
id CGC-C CGC-C++ Rode0day CVE

2021-30472
CVE

2021-3496
/bin/bash

release trailofbits trailofbits 19.11 PoDoFo
0.9.7

jhead
3.0.6

i386/ubuntu
18.04

bins 100 10 4 1 1 1
defect

scenarios
157 10 927 6 1

avg(min)
pos

104(9) 89.8(13) 1.5(1) 36 68

Compiler GNU GNU GNU GNU Clang GNU
Lang C C++ C C++ C C++

avg. LOC 37,670 1,138 84,725 47,414 4,203
line-cov
%avg 66 75 13.8

%std-dev 29.9 13.2 4.1
%med 77 79 13.6

5.2 External Tools
PRD uses Hex-Rays IDA Pro 7.5 SP2 (Hex-Rays), and GCC
8.4.1 with dietlibc used for APR. When handling C++ for
APR, we augment Hex-Rays failures with Ghidra 10.0.1.

BinrePaiReD, uses Valgrind for CGFL and supports two
APR tools: Prophet (v0.1, Clang-based) and GenProg (v3.2,
CIL-based). We used Prophet’s default search algorithm
with its profile localizer and three of GenProg’s: genetic
algorithm (“GA”), deterministic search (“AE”) [27], and
a “single-edit” repair search. When evaluating program
variants, GenProg substitutes standard compilation with
PRD. Prophet substitutes the compiler with custom scripts,
relying on environmental variables and dynamic libraries
(each is compatible with PRD). Ultimately, PRD operates
seamlessly with both APR tools.

6 EMPIRICAL EVALUATION

In this section, we present the results of our evaluation and
explain how they answer the research questions. The first
three subsections evaluate underlying assumptions and the
remaining three evaluate performance.

6.1 RQ1: Does CGFL identify function(s) relevant to the
vulnerability?
After confirming compatibility with our implementation,
we used the three dataset’s test-cases as stimuli and used
annotations for ground truth (i.e., vulnerable functions that
should be implicated).

For all binaries we studied, the results show that CGFL
output contains at least one ground-truth function for 95 of
100 CGC-C, 8 of 10 CGC-C++, and 196 of 206 Rode0day , which
succeeds despite having few tests (Section 5.1.2).

Although CGFL achieved 94.6% success under our cri-
teria, we observed three failure types that can be easily ex-
plained or mitigated. First, 14 binaries (4 CGC/10 Rode0day)
did not exercise any vulnerable function in negative tests
(f.1). Second, 10 were in the first three ranks, but ties affected
their selection (f.2), a common failure in SBFL metrics. Third,
one involved a buggy reimplementation of a libc function
(f.3). Although (f.1) is out of scope for both SBFL and test-
driven APR, (f.2) is readily mitigated with improved tests
or increaseing K (Section 4.1). Finally, (f.3) is a consequence
of our simple heuristic which screens out known library
functions and could be replaced with more sophisticated
screening.

TABLE 2
RQ2 (success rates for Type Recovery, Decompiler and Basic

Recompilation) and RQ3 (success rates for PRD Recompilation and
Test-equivalency) evaluation results, including failure rates from Type
Errors (proportion of all recompilation errors). Reported numbers are

per function, except Type Recovery, which is per binary. Basic and PRD
Recompile are without/with% typing errors.

RQ2: Partial decompilation RQ3: Partial recompilation
Dataset Success Failure Failure Success

Type
Recovery

Decompiler Basic
Recompile

Typing
Errors

Typing
Errors

PRD
Recompile

Test
Equivalent

CGC-C 54.0% 99.9% 89.5/79.1% 54.6% 56.6% 89.9/79.4% 92.1%
54/100 7060/7067 5585/6237 823/1507 823/1455 5605/6237 5161/5605

CGC-C++ 0.0% 87.8% 72.7/34.5% 80.3% 78.7% 70.4/33.3% 97.8%
0/10 1099/1251 379/521 578/720 578/732 367/521 357/365

Rode0days 50.0% 100.0% 51.5/22.4% 81.5% 82.5% 71.8/30.8% 96.4%
2/4 3297/3297 738/1432 1864/2289 1880/2280 1016/1416 979/1016

Total 49.1% 98.6% 71.2/45.3% 72.3% 73.4% 85.5/47.8% 93.0%

Fig. 4. Basic recompilation success rate per binary, with optimization.

Even when few tests are available, coarse-grained fault
localization works well in practice and contained the
relevant function in 299/316 cases.

6.2 RQ2: How often is decompiled code recompilable?

We studied the CGC-C, CGC-C++, and Rode0day datasets with
no restrictions on compilation or on the source code gram-
mar. We evaluated four aspects of decompilation: type re-
covery, decompiler success, basic recompilability, and full
recompilability. For type recovery we considered each bi-
nary independently, reporting success only if all specified
types were recovered. Decompiler and recompilability eval-
uations considered each function independently and asked
how many could be decompiled by Hex-Rays and recom-
piled. If Hex-Rays failed, then decompiler failed for that
function. Basic recompilation was measured per function
and fails if any dependency is not fully defined, i.e., is-
sues with compatible type recovery, prototype recovery, or
decompilation. We evaluated basic recompilation on the
raw decompiler output for function prototype recovery and
function content. However, the raw recovered type output
is rarely well-ordered, so we used PRD-transformed types
for assessing Typing Errors (Section 4.2.3).

Table 2 and Figure 4 demonstrate that decompilation
is surprisingly successful and that basic recompilation is
affected more often by type failures rather than by optimiza-
tion level. In total, 22.4% to 79.1% of functions succeeded at
basic recompilation while only two complete binaries were
successfully recompiled (CGC-C: Palindrome, Palindrome2).

We find that only 1.7% of binaries are fully recompilable,
but up to 79.1% of individually decompiled functions are
recompilable. This strongly supports the insight to use
partial, instead of full decompilation.

7

TABLE 3
APR Comparison: Full-source (baseline) vs. BinrePaiReD with PRD

decompiled code (PRD). We report the number of scenarios that
produced a plausible mitigation (mitigated), the total number that the

APR tool successfully launched its search, as well as the number which
the tool completed its search within 8 hours.

‘‘AE’’ GenProg
‘‘single edit’’

GenProg
‘‘GA’’

Prophet

baseline PRD baseline PRD baseline PRD baseline PRD
Total 137 157 129 157 94 157 79 157
Completed 122 137 113 129 67 94 79 79

Mitigated 45 69 48 69 32 51 57 52

6.3 RQ3: Is decompiled code behaviorally consistent
to original binary functions?

Each PRD binary was evaluated for test equivalency us-
ing the provided test-cases (Table 1) and compared to the
original binary. Any behavioral disparity is considered a
failure, and proof-of-vulnerability tests must both mitigate
the vulnerability and be test equivalent.

The results (Table 2) show that PRD’s recompilations are
consistent with basic recompilation (Section 6.2), i.e., PRD
decompilation transformations generally do not introduce
errors and are similarly impacted by typing errors. PRD
recompilation sometimes outperforms basic recompilation,
because e.g., if the decompiler recovers a static global
variable’s initial values, PRD only needs its reference and
type. The results also show that over 92% of PRD’s binaries
were test-equivalent to the original. We also evaluated the
behavior of each PRD binary, finding that only two binaries,
the same two from RQ2, could be fully reconstructed and
generate test-equivalent PRD binaries for all functions.

When recompilation succeeds, PRD produces patched
binaries that are test-equivalent to the original. PRD pro-
vides a solid foundation for source-level transformations.

6.4 RQ4: How effective is BinrePaiReD at mitigating vul-
nerabilities?

We consider two scenarios: Plausibility, i.e., can APR tools
leverage partially decompiled content to find repairs?; and
Content, i.e., does the form and quality of decompiled affect
the success of APR tools?

6.4.1 Plausibility.
We compared the success rate for APR tools applied to the
actual source code that produced the binary (baseline) to the
success rate for the same APR tool applied to PRD partially
decompiled code. Our primary evaluation features an end-
to-end use of BinrePaiReD, depicted in Figure 2). CGFL
implicates the relevant functions, which are individually de-
compiled to create PRD decompiled code, which is input to
the APR algorithm. To discover repairs, the APR algorithm
uses PRD tools to apply candidate source-level patches to
the original binary evaluates the resulting PRD binary’s
behavior using the provided tests. Unlike BinrePaiReD, the
baseline has access to the complete source.

Using the 157 defect scenarios from the CGC-C dataset,
we assessed baseline and PRD-enabled APR algorithms,
limiting each run to 8 hours (Table 3). The results show that
PRD-enabled repair, operating only on binaries, performs
as well as and sometimes better than full-source APR:

PRD-supported algorithms find 51–69 plausible patches,
while the full-source baselines find 32–57. Prophet performs
slightly better with access to the original source (57 vs. 52)
while the GenProg variants perform better in the PRD set-
ting (51–69 vs. 32–48). Collectively, our PRD-supported APR
tools mitigated 85 of the 148 scenarios (including 20 that the
winning CGC cyber-reasoning system, Mayhem [40], did
not patch). Overall, we find that the success rate for repairs
generated by BinrePaiReD are as good as those produced
by the same tools operating on full-source (p < 0.0004,
proportions z-test). Because the baselines have access to
the complete source code, we expected that BinrePaiReD
would succeed less often because it has much less source
code to use to help generate repairs, e.g., less code that
can be copied as part of a mutation. Although surprising,
it can be explained by the fact that that decompiled source
code is a better fit with typical APR operators than original
source code [41], which allows the APR operators to take
more advantage of code elements.

6.4.2 Case Studies: Repair Quality
It is well-known that APR tools can find repairs that overfit
the test suite [42], [43] without addressing the root cause of
the problem. We do not improve or worsen that orthogonal
concern here. Instead, we find that BinrePaiReD inherits the
repair quality of its underlying APR method. In our use
case, quickly disrupting an exploit is valuable, even if the
repair is not completely general. In the following, we focus
on the GenProg results for simplicity, but Prophet’s results
were similar.

First, in cases where GenProg failed to produce a mitiga-
tion, the required edit was usually out of scope, e.g., changes
to struct fields or unused variables. Other failures involved
special constant values or comparators, which are known
tool weakness (cf. [44]). Second, when GenProg does find a
successful mitigation, it often finds multiple solutions. We
randomly sampled 5–10% of the solutions and examined
their C representations (recall from Section 3, BinrePaiReD
retains source-level patches, facilitating such analyses). We
do not find significant differences in the rate of overfitting
between the full-source APR baseline and BinrePaiReD. As
a case study, we describe one example of overfitting and one
example that generates a general solution.

Lower-Quality Mitigation. For KPRCA_00013’s first vulner-
ability, GenProg’s single mutation solution passes all tests
and successfully mitigates the POV. In this edit, the “(”
character is pushed onto the operator stack in a loop, and
the next iteration flags an error since the top of the stack
is “(”. Although this patch does not address the intended
vulnerability it successfully blocks this particular exploit,
preventing control of the next heap block’s heap metadata.

Higher-Quality Mitigation. NRFIN_00076’s defect simu-
lates a vulnerability introduced when a programmer com-
mits unfinished code. The program incorrectly increments
*results in a frequent function, leading to the use of an
invalid pointer. The repair found by Genprog correctly
deletes the problematic code, eliminating the pointer issues.

In an end-to-end scenario, BinrePaiReD with PRD sup-
port can use a source-level APR tool to repair binaries
with results that are consistent with and sometimes better

8

than those using the same techniques on the full source.
This is true both in terms of the rate at which vulnerabil-
ities are mitigated and in terms of repair quality.

6.4.3 How Does Partial Decompilation Affect APR?

To assess the impact of decompilation on overall results,
we studied a random sample of 21 CGC CBs and their 30
scenarios. We consider three variations: access to the full
program source (baseline), the PRD-provided decompiled
source for implicated methods (PRD), and (exact) where
the CGC-provided source is used for the same implicated
methods, i.e., the exact source function replaces the decom-
piled function. GenProg and Prophet separately produce
28 candidate patches with the baseline, 18 with PRD, and
34 with exact decompilation. This result echoes the RQ2
finding that state-of-the-art decompilation tools have room
to improve in end-to-end usage scenarios.

Additionally, the difference in lines of code (LOC) offers
helps explain why exact decompilation can perform com-
parably to full source. Since decompilation applies only to
the implicated functions (reducing effective LOC by up to
95%). This supports our insight that CGFL, if accurate at
implicating a relevant subset, can help downstream stages,
including decompilation and program analysis/transforma-
tion. current decompilers’ weaknesses are mitigated by fault
localization filtering.

Decompilation quality can strongly affect BinrePaiReD,
but current decompilers’ weaknesses are mitigated by
CGFL fault localization filtering.

6.5 Case Study: Generality

The previous results demonstrate PRD’s effectiveness, but
for a binary-facing technique it is also important to consider
multiple languages, real-world programs and defects, and
execution overhead.

6.5.1 Application to C++.

PRD can partially decompile and recompile binaries pro-
duced from C++ (Table 2) for individual functions. Because
Prophet and GenProg don’t support C++, we cannot directly
compare to baseline APR performance. Rather, we conduct
an end-to-end study of the CGC-C++ examples in our dataset,
using each example’s CGFL results as the decompile set.
For each binary, we applied PRD to its CGFL, totaling
149 functions (including decompiled C++ class methods).
Although test-equivalent PRD binaries were generated for
7 of the 10 binaries, recompilation failures (94) dominated
test (10) and decompilation (9) failures, similar to the results
of Section 6.3. These results show that the PRD framework
is extensible to C++ binaries and can potentially support
automated repair of C-like binaries, if a C-based APR tool
were available. Because APR tools overwhelmingly favor
other languages than C++, these results also improve the
applicability of non-C++ APR tools.

6.5.2 Real-world Vulnerabilities.

We detail PRD and CGFL effectiveness for two real-world
programs that contain known vulnerabilities (Table 1).

CVE-2021-30472: For tests, we used the developer’s rec-
ommended example PDFs and the CVE input, bug4

for podofopdfinfo. This exploit hits a vulnerability in
PdfEncryptMD5Base::ComputeEncryptionKey (f1) before the
PdfEncryptMD5Base::ComputeOwnerKey (f2) vulnerability.
We applied CGFL, and all SBFL metrics identified f1 in
rank 1 (10 ties) of 265 with f2 at rank 147—echoing the
bug precedence. We successfully applied PRD to both meth-
ods. Because Hex-Rays incorrectly lifted the stack canary us-
ing x86-64 content, we manually corrected this problem by
adding equivalent x86 inline assembly. Using the GCC-G++
compiled binary and this content, PRD successfully gen-
erated a test-equivalent binary for f2, and mitigated the
vulnerability by modifying f1. Essentially, the decompiler
generated a large number of local variables for f1, which
changed the stack in a way that closed the vulnerability.
CVE-2021-3496: We used the same process for jhead.
CGFL implicated the function, ProcessMakerNote, as rank
3 of 42. Notably, it inlines the reported buggy function
ProcessCanonMakerNoteDir. PRD successfully generated a
test-equivalent binary from the Clang binary.

By manually applying the necessary bug fixes (less than
the lines were changed), we produce PRD-binaries that both
pass all tests, resolving the reported bugs for both CVEs,
successfully applying PRD to two real-world issues.
Source-less Patching: We next applied PRD to a bash bi-
nary obtained directly from a docker image, successfully
patching the builtin function, false, thus demonstrating
applicability to a GNU-C++ binary without access to the
source code.

6.5.3 Performance Analysis.

Using perf stat, we measured runtime and compile-time
performance for PRD binaries. For runtime, we compared
100 PRD binaries to their counterparts over 5,163 tests and
found no statistical difference in their performance ((user:
p < 0.970; system: p < 0.277, two-tail t-test)). For compile
time, an overhead relevant to APR algorithms, we sam-
pled 25 CGC CBs and their respective single-detour PRD
binaries, generating each 25 times. We found that generating
a PRD binary is statistically less expensive than compiling
the binary from source (user:p < 0.0; system: p < 8.4845e−192,
two-tail t-test). These results suggest that PRD does not
induce a performance overhead on APR tools.

PRD can be applied to C++ binaries and real-world CVEs.
The ability to produce test-equivalent binaries for the
C++ examples we studied is comparable to the rate we
observed for C. We find that both CGFL and PRD are
successful on the real-world CVEs we tested. We find neg-
ligible overhead associated with producing and running
PRD binaries.

7 DISCUSSION

After initial analysis to identify a relevant set of vulnerable
functions for binary patching, PRD supports both manual
and automated mitigation of binary-level exploits. PRD en-
ables source-level modifications of lifted content, and then
generates a new binary that executes the modified code
instead of the original.

9

Test suite quality can affect the accuracy and precision
of our FL at the binary level. However, Our CGFL evalu-
ation of Rode0days achieved a 95% success rate despite a
severely limited test suite. By identifying a small function
set, our CGFL strategy overcomes current limitations of
decompilers, reducing LOC to be decompiled by an average
of 95% (Section 6.4.3) over the complete binary.

It is surprising that the BinrePaiReD results we observed
were consistent with those obtained with APR that has
access to full source, since the methods we considered both
obtain the seeds of repairs (”fix” locations) from the rest
of the program [6], [7]. Our subsequent analysis showed
that decompiled code structure is often more consistent with
APR operators than the original source [41]. It is also likely
that by restricting the number of vulnerable functions the
size of the search problem is reduced in a way that aids the
APR search, a topic for future research.

Although decompiled code is less readable than the orig-
inal source, it is more readable than assembly (for manual
analysis) and not an impediment at all for APR. PRD enables
C-based APR tools to be extended to C++ binaries with
decompiling into C-like source (Section 6.5.1).

7.1 PRD Limitations and caveats.
Tools that use whole-program analysis, such as symbolic
execution used by Angelix [45], and interpreted languages
cannot be supported by BinrePaiReD and PRD. Although
our implementation focuses on 32b ELF and System-V, PRD
is compatible with other binary formats and ABIs, assuming
that calling conventions are upheld, decompiler support is
available, and engineering effort. Because PRD only uses
symbol names to map symbols to their entries and decom-
piled outputs, PRD is compatible with stripped binaries,
assuming decompiler support and some engineering. PRD
is compatible with ASLR binaries but doesn’t handle self-
modifying or self-checking binaries. PRD supports recursive
functions and local function pointers, but may require
specialization for other binary constructs, e.g., extending
debug to PRD recompiled code. In binary rewriting, stack-
unwinding could be supported by updating call frame
information tables; variable support can be extended to
thread-local storage and copy relocations by referencing
their respective ELF structures. The most serious challenge
for BinrePaiReD arises from the limitations of current de-
compilers (e.g., standard C content is not always generated).
In our evaluation, failure to generate test-equivalent PRD
binaries was usually caused by decompilation failures, and
our transformations are limited to currently known and mit-
igated decompiler weaknesses. Our evaluations also found
some brittleness, particularly with compiler-instrumented
binaries and type recovery. The motivating example (Sec-
tion 3) and the end-to-end repair results (Section 6.4)
demonstrate the full pipeline with Hex-Rays.

7.2 Decompilation failures.
Although decompilation techniques have improved dra-
matically, modern decompilers still struggle to generate
satisfactory results when the binary (1) is compiled from
a non-C language, (2) contains manual assembly code, or (3)
contains self-modifying or obfuscated code. Improvements
in decompilation will enhance PRD’s generality and quality.

7.3 Unsound decompilation results.
Decompilers can generate decompiled code that changes
the semantics of the original binary. While determining
the equivalence of two arbitrary binaries is undecidable in
general, this problem could be addressed by requiring byte-
level equivalence between the original binary code and the
recompiled, unpatched code [4]. Our evaluation strategy re-
sembles Equivalence Modulo Input testing [46] and assumes
adequate coverage. We validated generated binaries against
existing test cases (coverage in Table 1). Although they are
sufficient for FL and APR, test generation could improve
coverage and confidence in equivalency checks.

8 RELATED WORK

Three topics most relevant to PRD and BinrePaiReD are:
binary patching and rewriting, APR, and binary code de-
compilation.

8.1 Binary Patching and Rewriting
There are two main binary rewriting approaches: dynamic
and static. Dynamic binary rewriting, or dynamic binary
instrumentation, inserts user code at specified binary lo-
cations at runtime, e.g., Pin [47], Valgrind [30], and Dy-
namoRIO [48]. These techniques can introduce prohibitively
high overhead and are unused for production binary patch-
ing. Static binary rewriting techniques, like Egalito [49]
and LIEF [36], perform code transformation and relocation
before execution with much lower runtime overhead than
dynamic methods. These methods are more suitable for
generic tasks like binary patching or control-flow integrity
enforcement. Ramblr [50] and ddisasm [51] convert binary
code into assembly that can later be reassembled into a new
binary. E9Patch performs in-binary byte editing in AMD64
binaries to allow insertion of a few chunks of code [52].
These methods do require additional effort to craft repairs
to patch binaries. CGC finalists used either in-place binary
editing or reassembly to apply patches [40], [53], [54]—PRD
could easily have been used in these contexts. No existing
solutions transform binary code to usable high-level source.

8.2 Automated Program Repair
APR is an established research area [22], [23], [55], and
the vast majority of tools and methods operate directly on
source code. Some exceptions are Schulte et al.’s papers
[56]–[58] and Orlov and Sipper’s early explorations with
Java bytecode [59], [60], both of which operate directly
on lower-level representations without lifting to source.
Other tools, e.g., RSRepair [61], Kali [62], and SPR [63], are
all compatible and would require modifications similar to
those we made for our tested tools. Other tools, like Code-
Phage [64] and CodeCarbonCopy [65], are compatible with
PRD but would require more extensive modifications. Simi-
larly, ML source-based repair methods, like CoCoNut [66]
or VulRepair [25], may be compatible with PRD. These
methods are largely trained on human-generated source
code (may not be available), rely on external evaluations
for repair correctness, and require perfect fault localization,
i.e., the buggy location is annotated in the input. While
Angelix [45] operates on source code, it uses symbolic

10

execution and therefore is incompatible with our approach.
OSSPatcher [67] targets third-party, open-source libraries for
automatic binary patching, but it requires both source and
source-based patches.

8.3 Binary Code Decompilation
Progress in binary code decompilation relies on advances
in binary code extraction, (control flow) structural anal-
ysis, and type inference. Binary code extraction on non-
obfuscated binaries is equivalent to control flow graph
recovery, where state-of-the-art approaches work in a
compiler-, platform-, and architecture-agnostic manner with
high precision [51], [68], [69]. Structural analysis has pro-
gressed significantly: Schwartz et al. reduced the number of
goto statements [70]; and Yakdan et al. proposed pattern-
independent control-flow structuring to eliminate goto
statements and improve readability [5]. Due to their require-
ment in code coverage (e.g., [11], [71], [72]), decompilers
often use static analyses or type inference. Recent progress
in decompilation enabled the recompilation of decompiled
code—considered impossible by most researchers until re-
cently. For example, Liu et al. show that the output of
modern C decompilers is generally recompilable [2] when
grammar and types are restricted. Similarly, Harrand et al.
present a method that mitigates Java decompiler failures by
merging outputs [73]. Both examples confirm that decom-
pilers sometimes generate incorrect output.

9 CONCLUSION

Security-critical vulnerabilities that arise after software is
deployed must be addressed quickly, even when full recom-
pilation is not possible. Further, 15–25% of sampled post-
release operating system bug fixes are reported to have end-
user visible impacts such as information corruption [74].
We present a new way to patch binaries when recompiling
from complete source is not an option. Although full-source
decompilation remains a challenge, we show that it gener-
ates recompilable code for most functions. By focusing on
only the vulnerable functions, state-of-the-art decompilers
can produce recompilable code that is amenable to source-
level code repair tools. We introduce CGFL to identify a set
of suspicious functions, partial decompilation to lift relevant
sections of the binary to source where repairs are developed
and applied, and finally generate a PRD binary addressing
the problem. Our implementation and datasets are available
at https://github.com/AdaptiveComputationLab/FuncRepair.

Today’s tools are better at finding vulnerabilities than
they are at patching them. We hope that our methods will
help rectify that imbalance, by leveraging recent advances
in source-level APR and decompilation. Although APR is
an active area of research and used in industry, its potential
has not been equally realized for binary code. BinrePaiReD
using PRD to address these shortfalls.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for their
valuable feedback. The authors gratefully acknowledge
the partial support of NSF (CCF 1908633, OAC 2115075),
DARPA (FA8750-19C-0003, N6600120C4020), and the Santa
Fe Institute.

REFERENCES

[1] M. Monperrus, “The living review on automated program repair,”
HAL/archives-ouvertes.fr, Tech. Rep. hal-01956501, 2018.

[2] Z. Liu and S. Wang, “How far we have come: testing
decompilation correctness of C decompilers,” in Intl. Symposium
on Software Testing and Analysis, ISSTA. ACM, 2020.

[3] M. Botacin, L. Galante, P. de Geus, and A. Grégio, “Revenge is
a dish served cold: Debug-oriented malware decompilation and
reassembly,” in Reversing and Offensive-Oriented Trends Symposium.
ACM, 2020.

[4] E. Schulte, J. Ruchti, M. Noonan, D. Ciarletta, and A. Loginov,
“Evolving exact decompilation,” in Workshop on Binary Analysis
Research. Internet Society, 2018.

[5] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, “No
more gotos: Decompilation using pattern-independent control-
flow structuring and semantic-preserving transformations,” in
Network and Distributed System Security Symposium, NDSS. The
Internet Society, 2015.

[6] F. Long and M. C. Rinard, “Automatic patch generation by
learning correct code,” in SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL. ACM, 2016.

[7] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog:
A generic method for automatic software repair,” IEEE Trans.
Software Eng., 2012.

[8] J. Song and J. Alves-Foss, “The darpa cyber grand challenge: A
competitor’s perspective,” IEEE Security Privacy, 2015.

[9] “Rode0day,” , accessed: 2022-07-20.
[10] A. Gussoni, A. D. Federico, P. Fezzardi, and G. Agosta, “A

comb for decompiled C code,” in Asia Conf. on Computer and
Communications Security, ASIA CCS. ACM, 2020.

[11] M. Noonan, A. Loginov, and D. Cok, “Polymorphic type
inference for machine code,” in Programming Language Design and
Implementation, PLDI. ACM, 2016.

[12] J. R. Larus and E. Schnarr, “EEL: machine-independent executable
editing,” in Programming Language Design and Implementation,
PLDI. ACM, 1995.

[13] W. Masri, “Fault localization based on information flow
coverage,” Softw. Test. Verification Reliab., 2010.

[14] R. P. A. de Araujo and M. L. Chaim, “Data-flow testing in the
large,” in Intl. Conf. on Software Testing, Verification and Validation,
ICST. IEEE Computer Society, 2014.

[15] H. Zhu, T. Peng, L. Xiong, and D. Peng, “Fault localization
using function call sequences,” Procedia Computer Science, 2017,
intl. Congress of Information and Communication Technology
(ICICT2017).

[16] E. M. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest,
“Automated repair of binary and assembly programs for
cooperating embedded devices,” in Architectural Support for
Programming Languages and Operating Systems, ASPLOS. ACM,
2013.

[17] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., 2009.

[18] T. Hirsch, “A fault localization and debugging support framework
driven by bug tracking data,” in Intl. Symposium on Software
Reliability Engineering Workshops, ISSRE Workshops. IEEE, 2020.

[19] M. Motwani and Y. Brun, “Automatically repairing programs
using both tests and bug reports,” CoRR, 2020.

[20] S. Lin, “Rank aggregation methods,” Wiley Interdisciplinary Re-
views: Computational Statistics, 2010.

[21] S. Shen, A. Kolluri, Z. Dong, P. Saxena, and A. Roychoudhury,
“Localizing vulnerabilities statistically from one exploit,” in ASIA
CCS: ACM Asia Conf. on Computer and Communications Security.
ACM, 2021.

[22] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated
program repair,” Commun. ACM, 2019.

[23] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software
repair: A survey,” IEEE Trans. Software Eng., 2019.

[24] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair
with execution-based backpropagation,” in Intl. Conf. on Software
Engineering, ICSE. ACM, 2022.

[25] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Q. Phung,
“Vulrepair: a t5-based automated software vulnerability repair,”
in Foundations of Software Engineering. ACM, 2022.

11

https://github.com/AdaptiveComputationLab/FuncRepair

[26] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each,” in Intl. Conf. on Software Engineering, ICSE,
2012.

[27] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program
equivalence for adaptive program repair: Models and first
results,” in Intl. Conf. on Automated Software Engineering, ASE.
IEEE/ACM, 2013.

[28] Y. Hu, Y. Zhang, and D. Gu, “Automatically patching
vulnerabilities of binary programs via code transfer from correct
versions,” IEEE Access, 2019.

[29] P. Reiter, “https://github.com/AdaptiveComputationLab/FuncRepair,”
.

[30] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” in Programming
Language Design and Implementation, PLDI. ACM, 2007.

[31] J. Jones, M. Harrold, and J. Stasko, “Visualization of test in-
formation to assist fault localization,” in Intl. Conf. on Software
Engineering, ICSE, 2002.

[32] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
on the effectiveness of dataflow- and control-flow-based test ade-
quacy criteria,” in Intl. Conf. on Software Engineering, ICSE, 1994.

[33] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model
for spectra-based software diagnosis,” ACM Trans. Softw. Eng.
Methodol., 2011.

[34] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “Spectrum-
based multiple fault localization,” in Intl. Conf. on Automated
Software Engineering, ASE. IEEE/ACM, 2009.

[35] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Trans. Reliab., 2014.

[36] R. Thomas, “Lief-library to instrument executable formats,” 2017.
[37] trailofbits, “trailofbits/cb-multios: Darpa challenges sets for linux,

windows, and macos,” , 2017, accessed: 2021-08-07.
[38] “Podofo download — sourceforge.net,” , accessed: 2021-07-28.
[39] “Matthias-wandel/jhead,” , accessed: 2021-07-28.
[40] T. Avgerinos, D. Brumley, J. Davis, R. Goulden, T. Nighswander,

A. Rebert, and N. Williamson, “The mayhem cyber reasoning
system,” IEEE Secur. Priv., 2018.

[41] P. Reiter, A. M. Espinoza, A. Doupé, R. Wang, W. Weimer, and
S. Forrest, “Improving source-code representations to enhance
search-based software repair,” in GECCO: Genetic and Evolutionary
Computation Conf. ACM, 2022.

[42] E. K. Smith, E. T. Barr, C. L. Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,”
in Foundations of Software Engineering. ACM, 2015.

[43] X. D. Le, F. Thung, D. Lo, and C. L. Goues, “Overfitting in
semantics-based automated program repair,” in Intl. Conf. on
Software Engineering, ICSE. ACM, 2018.

[44] V. P. L. Oliveira, E. F. de Souza, C. L. Goues, and C. G.
Camilo-Junior, “Improved representation and genetic operators
for linear genetic programming for automated program repair,”
Empir. Softw. Eng., 2018.

[45] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: scalable
multiline program patch synthesis via symbolic analysis,” in Intl.
Conf. on Software Engineering, ICSE. ACM, 2016.

[46] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM Sigplan Notices, 2014.

[47] C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G.
Lowney, S. Wallace, V. J. Reddi, and K. M. Hazelwood,
“Pin: building customized program analysis tools with
dynamic instrumentation,” in Programming Language Design
and Implementation, PLDI. ACM, 2005.

[48] “Tutorial: Building dynamic instrumentation tools with dy-
namorio,” in Intl. Symposium on Code Generation and Optimization
(CGO 2011), 2011.

[49] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson,
F. Spano, Y. J. Wu, J. Yang, and V. P. Kemerlis, “Egalito:
Layout-agnostic binary recompilation,” in Architectural Support for
Programming Languages and Operating Systems, ASPLOS. ACM,
2020.

[50] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly
great again,” in Network and Distributed System Security Symposium,
NDSS. The Internet Society, 2017.

[51] A. Flores-Montoya and E. M. Schulte, “Datalog disassembly,” in
USENIX Security Symposium. USENIX Association, 2020.

[52] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting
without control flow recovery,” in Programming Language Design
and Implementation, PLDI. ACM, 2020.

[53] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama, J. Corbetta,
F. Disperati, A. Dutcher, J. Grosen, P. Grosen, A. Machiry, C. Salls,
N. Stephens, R. Wang, and G. Vigna, “Mechanical phish: Resilient
autonomous hacking,” IEEE Security and Privacy, 2018.

[54] A. Nguyen-Tuong, D. Melski, J. W. Davidson, M. Co, W. H.
Hawkins, J. D. Hiser, D. Morris, D. Nguyen, and E. F. Rizzi,
“Xandra: An autonomous cyber battle system for the cyber grand
challenge,” IEEE Secur. Priv., 2018.

[55] M. Monperrus, “Automatic software repair: A bibliography,”
ACM Comput. Surv., 2018.

[56] E. M. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest,
“Automated repair of binary and assembly programs for
cooperating embedded devices,” in Architectural Support for
Programming Languages and Operating Systems, ASPLOS. ACM,
2013.

[57] E. Schulte, S. Forrest, and W. Weimer, “Automated program repair
through the evolution of assembly code,” in Int. Conf. on Automated
Software Engineering. ACM, 2010.

[58] E. M. Schulte, W. Weimer, and S. Forrest, “Repairing cots router
firmware without access to source code or test suites: A case
study in evolutionary software repair,” in Genetic and Evolutionary
Computation Conf. ACM, 2015.

[59] M. Orlov and M. Sipper, “Genetic programming in the wild:
evolving unrestricted bytecode,” in Genetic and Evolutionary
Computation Conf., GECCO. ACM, 2009.

[60] M. Orlov, “Evolving software building blocks with FINCH,” in
Genetic and Evolutionary Computation Conf. ACM, 2017.

[61] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Intl. Conf. on
Software Engineering, ICSE. ACM, 2014.

[62] Z. Qi, F. Long, S. Achour, and M. C. Rinard, “An analysis of
patch plausibility and correctness for generate-and-validate patch
generation systems,” in Intl. Symposium on Software Testing and
Analysis, ISSTA. ACM, 2015.

[63] F. Long and M. C. Rinard, “Staged program repair with condition
synthesis,” in Foundations of Software Engineering. ACM, 2015.

[64] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard,
“Automatic error elimination by horizontal code transfer across
multiple applications,” in Programming Language Design and Imple-
mentation, PLDI. ACM, 2015.

[65] S. Sidiroglou-Douskos, E. Lahtinen, A. Eden, F. Long, and M. Ri-
nard, “Codecarboncopy,” in Foundations of Software Engineering.
ACM, 2017.

[66] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan,
“Coconut: combining context-aware neural translation models
using ensemble for program repair,” in Intl. Symposium on Software
Testing and Analysis, ISSTA. ACM, 2020.

[67] R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong, M. Ike,
B. Saltaformaggio, and W. Lee, “Automating patching of
vulnerable open-source software versions in application binaries,”
in Network and Distributed System Security Symposium, NDSS. The
Internet Society, 2019.

[68] R. Qiao and R. Sekar, “Function interface analysis: A principled
approach for function recognition in COTS binaries,” in IEEE/IFIP
Intl. Conf. on Dependable Systems and Networks, DSN. IEEE
Computer Society, 2017.

[69] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic
function detection in binaries,” in European Symposium on Security
and Privacy, EuroS&P. IEEE, 2017.

[70] D. Brumley, J. Lee, E. J. Schwartz, and M. Woo, “Native x86
decompilation using semantics-preserving structural analysis and
iterative control-flow structuring,” in USENIX Security Symposium.
USENIX Association, 2013.

[71] Z. Xu, C. Wen, and S. Qin, “Learning types for binaries,” in Intl.
Conf. on Formal Engineering Methods, ICFEM/FMSE. Springer,
2017.

[72] A. Maier, H. Gascon, C. Wressnegger, and K. Rieck, “Typeminer:
Recovering types in binary programs using machine learning,” in
Detection of Intrusions and Malware, and Vulnerability Assessment,
DIMVA. Springer, 2019.

[73] N. Harrand, C. Soto-Valero, M. Monperrus, and B. Baudry, “Java
decompiler diversity and its application to meta-decompilation,”
J. Syst. Softw., 2020.

12

[74] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N.
Bairavasundaram, “How do fixes become bugs?” in Foundations
of Software Engineering. ACM, 2011.

Pemma Reiter Pemma Reiter received the B.S.
in Computer Engineering from Virginia Tech in
2001 and the M.Sc. in Computer Science from
Arizona State University in 2019, where she is
currently a Ph.D. candidate. Before joining ASU,
she worked at Intel Corp. 2001-2017 as a pre-
silicon validation, design, and firmware engineer,
and technical lead for System-on-a-Chip prod-
ucts. Her research interests focus on program
representation at multiple abstraction levels with
a goal of improving software quality, tools, and

human understanding.

Hui Jun Tay Hui Jun Tay is a PhD student at Arizona Student University,
SEFCOM. They graduated with a B.S./M.S. in Electrical and Computer
Engineering from Carnegie Mellon University in 2015/2016. Before pur-
suing their PhD, they worked for DSO National Laboratories from 2016-
2019 as a Computer Security Researcher in the field of embedded
security. Hui Jun’s current research interests include firmware analysis,
symbolic execution and automated program analysis.

Westley Weimer Westley Weimer received the
BA degree in computer science and mathemat-
ics from Cornell University, and the MS and PhD
degrees in computer engineering from the Uni-
versity of California, Berkeley. He is currently
a professor of computer science with the Uni-
versity of Michigan. His main research interests
include static and dynamic analyses to improve
software quality and fix defects, as well as medi-
cal imaging and human studies of programming.

Adam Doupé Dr. Adam Doupé is an Associate
Professor in the School of Computing and Aug-
mented Intelligence at Arizona State University.
He is also Director of the Center for Cyberse-
curity and Trusted Foundations in the Global
Security Initiative at Arizona State University and
the co-Director of the Laboratory of Security En-
gineering For Future Computing (SEFCOM). He
plays CTFs with Shellphish, and as a Founding
Member of the Order of the Overflow hosted the
DEF CON CTF (Quals and Finals) from 2018–

2021. His research focuses on automated vulnerability analysis, web
security, binary analysis, mobile security, network security, underground
economies, cybercrime, hacking competitions, and human factors of
security.

Fish Wang Dr. Ruoyu “Fish” Wang is an As-
sociate Professor in the School of Computing
and Augmented Intelligence at Arizona State
University. He is Associate Director of the Cen-
ter for Cybersecurity and Trusted Foundations
in the Global Security Initiative at Arizona State
University and the co-Director of the Laboratory
of Security Engineering For Future Computing
(SEFCOM). He is a long-time Shellphish CTF
player and a member of Nautilus Institute, the
DEF CON CTF (Quals and Finals) organizer

since 2022. His main research interest is binary analysis, including but
not limited to, automated reverse engineering, vulnerability discovery,
exploit generation, and decompilation.

Stephanie Forrest Stephanie Forrest is a Pro-
fessor in the School of Computing and Aug-
mented Intelligence at Arizona State University,
where she directs the Biodesign Center for Bio-
computation, Security and Society. Her interdis-
ciplinary research focuses on the intersection of
biology and computation, including cybersecu-
rity, software engineering, and biological model-
ing.

13

	Introduction
	Background
	Binary Decompilation and Rewriting.
	Fault Localization.
	Automated Program Repair.

	Motivating Example
	Partially Recompilable Decompilation
	Coarse-Grained Fault Localization (CGFL)
	Partial decompilation
	Constraints on PRD recompiled code
	Binary-Source Interfaces
	Decompilation.
	Implementation

	Partial Recompilation
	Binary Rewriting

	Experimental Setup
	Benchmark Datasets
	CGC-C and CGC-C++
	Rode0day
	Real-World Case Study

	External Tools

	Empirical Evaluation
	RQ1: Does CGFL identify function(s) relevant to the vulnerability?
	RQ2: How often is decompiled code recompilable?
	RQ3: Is decompiled code behaviorally consistent to original binary functions?
	RQ4: How effective is BinrePaiReD at mitigating vulnerabilities?
	Plausibility.
	Case Studies: Repair Quality
	How Does Partial Decompilation Affect APR?

	Case Study: Generality
	Application to C++.
	Real-world Vulnerabilities.
	Performance Analysis.

	Discussion
	PRD Limitations and caveats.
	Decompilation failures.
	Unsound decompilation results.

	Related Work
	Binary Patching and Rewriting
	Automated Program Repair
	Binary Code Decompilation

	Conclusion
	References
	Biographies
	Pemma Reiter
	Hui Jun Tay
	Westley Weimer
	Adam Doupé
	Fish Wang
	Stephanie Forrest

