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Abstract—Phishing attacks have reached record volumes in
recent years. Simultaneously, modern phishing websites are grow-
ing in sophistication by employing diverse cloaking techniques
to avoid detection by security infrastructure. In this paper, we
present PhishFarm: a scalable framework for methodically testing
the resilience of anti-phishing entities and browser blacklists to
attackers’ evasion efforts. We use PhishFarm to deploy 2,380
live phishing sites (on new, unique, and previously-unseen .com
domains) each using one of six different HTTP request filters
based on real phishing kits. We reported subsets of these sites
to 10 distinct anti-phishing entities and measured both the
occurrence and timeliness of native blacklisting in major web
browsers to gauge the effectiveness of protection ultimately
extended to victim users and organizations. Our experiments
revealed shortcomings in current infrastructure, which allows
some phishing sites to go unnoticed by the security community
while remaining accessible to victims. We found that simple
cloaking techniques representative of real-world attacks— in-
cluding those based on geolocation, device type, or JavaScript—
were effective in reducing the likelihood of blacklisting by over
55% on average. We also discovered that blacklisting did not
function as intended in popular mobile browsers (Chrome, Safari,
and Firefox), which left users of these browsers particularly
vulnerable to phishing attacks. Following disclosure of our
findings, anti-phishing entities are now better able to detect and
mitigate several cloaking techniques (including those that target
mobile users), and blacklisting has also become more consistent
between desktop and mobile platforms— but work remains to
be done by anti-phishing entities to ensure users are adequately
protected. Our PhishFarm framework is designed for continuous
monitoring of the ecosystem and can be extended to test future
state-of-the-art evasion techniques used by malicious websites.

I. INTRODUCTION

Phishing has maintained record-shattering levels of volume
in recent years [1] and continues to be a major threat to today’s
Internet users. In 2018, as many as 113,000 unique monthly
phishing attacks were reported to the APWG [2]. Beyond dam-
aging well-known brands and compromising victims’ identi-
ties, financials, and accounts, cybercriminals annually inflict
millions of dollars of indirect damage due to the necessity
of an expansive anti-abuse ecosystem which serves to protect
the targeted companies and consumers [3]. With an ever-
increasing number of Internet users and services— in particu-
lar on mobile devices [4]— the feasibility of social engineering
on a large scale is also increasing. Given the potential for

lucrative data, phishers are engaged in a tireless cat-and-
mouse game with the ecosystem and seek to stay a step ahead
of mitigation efforts to maximize the effectiveness of their
attacks. Although new phishing attack vectors are emerging
(e.g. via social media as a distribution channel [5]), malicious
actors still primarily deploy “classic” phishing websites [2].
These malicious sites are ultimately accessed by victim users
who are tricked into revealing sensitive information.

Today’s major web browsers, both on desktop and mobile
platforms, natively incorporate anti-phishing blacklists and
display prominent warnings when a user attempts to visit a
known malicious site. Due to their ubiquity, blacklists are
a user’s main and at times only technical line of defense
against phishing. Unfortunately, blacklists suffer from a key
weakness: they are inherently reactive [6]. Thus, a mali-
cious website will generally not be blocked until its nature
is verified by the blacklist operator. Phishing sites actively
exploit this weakness by leveraging cloaking techniques [7] to
avoid or delay detection by blacklist crawlers. Cloaking has
only recently been scrutinized in the context of phishing [8];
to date, there have been no formal studies of the impact
of cloaking on blacklisting effectiveness (despite numerous
empirical analyses of blacklists in general). This shortcoming
is important to address, as cybercriminals could potentially be
causing ongoing damage without the ecosystem’s knowledge.

In this paper, we carry out a carefully-controlled experiment
to evaluate how 10 different anti-phishing entities respond
to reports of phishing sites that employ cloaking techniques
representative of real-world attacks. We measure how this
cloaking impacts the effectiveness (i.e. site coverage and
timeliness) of native blacklisting across major desktop and
mobile browsers. We performed preliminary tests in mid-2017,
disclosed our findings to key entities (including Google Safe
Browsing, Microsoft, browser vendors, and the APWG), and
conducted a full-scale retest in mid-2018. Uniquely and unlike
prior work, we created our own (innocuous) PayPal-branded
phishing websites (with permission) to minimize confounding
effects and allow for an unprecedented degree of control.

Our work reveals several shortcomings within the anti-
phishing ecosystem and underscores the importance of robust,
ever-evolving anti-phishing defenses with good data sharing.
Through our experiments, we found that cloaking can prevent
browser blacklists from adequately protecting users by signif-



icantly decreasing the likelihood that a phishing site will be
blacklisted, or substantially delaying blacklisting, in particular
when geolocation- or device-based request filtering techniques
are applied. Moreover, we identified a gaping hole in the
protection of top mobile web browsers: shockingly, mobile
Chrome, Safari, and Firefox failed to show any blacklist
warnings between mid-2017 and late 2018 despite the presence
of security settings that implied blacklist protection. As a
result of our disclosures, users of the aforementioned mobile
browsers now receive comparable protection to desktop users,
and anti-phishing entities now better protect against some of
the cloaking techniques we tested. We propose a number of
additional improvements which could further strengthen the
ecosystem, and we will freely release the PhishFarm frame-
work1 to interested researchers and security organizations
for continued testing of anti-phishing systems and potential
adaptation for measuring variables beyond just cloaking. Thus,
the contributions of this work are as follows:

‚ A controlled empirical study of the effects of server-side
request filtering on blacklisting coverage and timeliness
in modern desktop and mobile browsers.

‚ A reusable, automated, scalable, and extensible frame-
work for carrying out our experimental design.

‚ Identification of actionable real-world limitations in the
current anti-phishing ecosystem.

‚ Enhancements to blacklisting infrastructure after disclo-
sure to anti-phishing entities, including phishing protec-
tion in mobile versions of Chrome, Safari, and Firefox.

II. BACKGROUND

Phishing is a type of social engineering attack that seeks
to trick victims into disclosing sensitive information, often via
a fraudulent website which impersonates a real organization.
Attackers (phishers) then use the stolen data for their own
monetary gain [9], [10], [11]. Cybercriminals are vehement
in their attacks and the scale of credential theft cannot be
overstated. Between March 2016 and 2017, malware, phishing,
and data breaches led to 1.9 billion usernames and passwords
being offered for sale on black market communities [12].

A. Phishing Attacks

An online phishing attack consists of three stages: prepara-
tion, distribution, and data exfiltration, respectively. First, prior
to involving any victims, an attacker deploys a spoofed version
of a legitimate website (by copying its look and feel) such that
it is difficult for an average user to discern that it is fake. This
deployment can be done using a phishing kit, as discussed
in Section II-B. Second, the attacker sends messages (such
as spam e-mails) to the user (leveraging social engineering to
insist that action is needed [13]) and lures the user to click on
a link to the phishing site. If the victim is successfully fooled,
he or she then visits the site and submits sensitive information
such as account credentials or credit card numbers. Finally,
the phishing site transmits the victim’s information back to the

1Framework details are available at https://phishfarm-project.com

phisher, who will attempt to fraudulently use it for monetary
gain either directly or indirectly [14].

Phishing attacks are ever-evolving in response to ecosystem
standards and may include innovative components that seek
to circumvent existing mitigations. A current trend (mimick-
ing the wider web) is the adoption of HTTPS by phishing
sites, which helps them avoid negative security indicators in
browsers and may give visitors a false sense of security [15],
[16]. At the end of 2017, over 31% of all phishing sites
reported to the APWG used HTTPS, up from less than 5%
a year prior [2]. Another recent trend is the adoption of
redirection links, which allows attackers to distribute a link
that differs from the actual phishing landing page. Redirection
chains commonly consist of multiple hops [17], [18], each
potentially leveraging a different URL shortening service or
open redirection vulnerability [19]. Notably, redirection allows
the number of unique phishing links being distributed to grow
well beyond the number of unique phishing sites, and such
links might thus better slip past spam filters or volume-based
phishing detection [20]. Furthermore, redirection through well-
known services such as bit.ly may better fool victims [5],
though it also allows the intermediaries to enact mitigations.

Ultimately, phishers cleverly attempt to circumvent existing
controls in an effort to maximize the effectiveness of their
attacks. The anti-phishing community should seek to predict
such actions and develop new defenses while ensuring that
existing controls remain resilient.

B. Phishing Kits

A phishing kit is a unified collection of tools used to
deploy a phishing site on a web server [21]. Kits are generally
designed to be easy to deploy and configure; when combined
with mass-distribution tools [9], they greatly lower the barrier
to entry and enable phishing on a large scale [22]. They are
part of the cybercrime-as-a-service economy [23] and are often
customized to facilitate a specific attack [24]. In the wild, they
are deployed on compromised infrastructure or infrastructure
managed directly by malicious actors.

1) Cloaking: A recent study found that phishing kits com-
monly use server-side directives to filter (i.e. block or turn
away) unwanted (i.e. non-victim) traffic, such as search engine
bots, anti-phishing crawlers, researchers, or users in locations
that are incompatible with the phishing kit [8]. Attributes such
as the visitor’s IP address, hostname, user agent, or referring
URL are leveraged to implement these filtering techniques.

Similar approaches, known as cloaking, have historically
been used by malicious actors to influence search engine rank-
ings by displaying different web content to bots than human
visitors [7]. Users follow a misleading search result and are
thus tricked into visiting a site which could contain malware
or adware. Relatively little research has focused on cloaking
outside of search engines; our experiment in Section III is
the first controlled study, to the best of our knowledge, that
measures the impact of cloaking within phishing attacks.



TABLE I: Overview of market share and blacklist providers
of major web browsers (* denotes browsers we tested).

Est. Market Share
(Worldwide) [28], [4]Browser Name

Phishing
Blacklist
Provider 7/2017 7/2018

Desktop Web Browsers
Google Chrome* 63.48% 67.60%
Mozilla Firefox* 13.82% 11.23%
Safari*

Google
Safe Browsing
(GSB) 5.04% 5.01%

Internet Explorer (IE)* 9.03% 6.97%
Microsoft Edge*

Microsoft
SmartScreen 3.95% 4.19%

Opera* Opera 2.25% 2.48%
Others Varies 2.43% 2.52%

Mobile Web Browsers
Google Chrome* GSB 50.07% 55.98%
Safari* GSB 17.19% 17.70%
UC Browser None 15.55% 12.49%
Samsung Internet None 6.54% 5.12%
Opera* (non-mini) Opera 5.58% 4.26%
Android Browser None 3.41% 1.95%
Mozilla Firefox* GSB 0.06% 0.31%
Others Varies 1.60% 2.19%

C. Anti-phishing Ecosystem

Even though phishing attacks only directly involve the
attacker, the victim, and the impersonated organization, a large
amount of collateral damage is caused due to the abuse of
a plethora of independent systems which ultimately facilitate
the attack [25]. Moreover, credential re-use, fueled by the
sale of credentials in underground economies [9], [26], causes
phishing threats aimed at one organization to potentially affect
others. Over time, an anti-phishing ecosystem has matured; it
consists of commercial security vendors, consumer antivirus
organizations, web hosts, domain registrars, e-mail and mes-
saging platforms, and dedicated anti-phishing entities [27],
[8]. These entities consist of enterprise firms that operate on
behalf of victim organizations, clearinghouses that aggregate
and share abuse data, and the blacklists which directly protect
web browsers and other software.

D. Detecting Phishing

The distribution phase of phishing attacks is inevitably
noisy, as links to each phishing site are generally sent to a
large set of potential victims. Thus, the thousands of phishing
attacks reported each month easily translate into messages with
millions of recipients [29]. Detection can also occur during the
preparation and exfiltration stages. As artifact trails propagate
through the security community, they can be used to detect and
respond to attacks. Detection methods include classification
of e-mails [30], [31], analyzing underground tools and drop
zones [10], identifying malicious hostnames through passive
DNS [32], URL and content classification [33], [20], [34],
[35], malware scanning by web hosts [36], monitoring domain
registrations [26] and certificate issuance [37], and receiving
direct reports. All of these potential detection methods can
result in reports which may be forwarded to anti-phishing
entities that power blacklists [6].

E. Browser Blacklists

The final piece of the puzzle in defending against phishing is
the conversion of intelligence about attacks into the protection
of users. Native browser blacklists are a key line of defense

against phishing and malware sites, as they are enabled by
default in modern web browsers and thus automatically protect
even unaware users. In the absence of third-party security
software, once a phishing message reaches a potential victim,
browser blacklists are the only technical control that stands
between the victim and the display of the phishing content.
Studies have shown that blacklists are highly effective at
stopping a phishing attack whenever a warning is shown [6].
Such warnings are prominent, but typically only appear after
the blacklist operator’s web crawling infrastructure verifies the
attack; some are also based on proactive heuristics [6].

Today’s major web browsers are protected by one of three
different blacklist providers, as shown in Table I. While
Google Safe Browsing (GSB) and SmartScreen are well-
documented standalone blacklists, Opera does not publicly
disclose the sources for its blacklist. Prior work by NSS
Labs suggests that PhishTank and Netcraft are among Opera’s
current third-party partners [38]; this is supported by our
experimental results. We know that blacklists are effective
when they function as intended [39], but is this always the
case? Do blacklists offer adequate protection against phishers’
evasion efforts such as cloaking, or are phishers launching
attacks with impunity? We focus on answering these questions
in the rest of this paper.

III. EXPERIMENTAL METHODOLOGY

Our primary research goal is to measure how cloaking af-
fects the occurrence and timeliness of blacklisting of phishing
sites within browsers. On a technical level, cloaking relies on
filtering logic that restricts access to phishing content based
on metadata from an HTTP request. Filtering is widely used
in phishing kits [8]; attackers aim to maximize their return on
investment by only showing the phishing content to victims
rather than anti-abuse infrastructure. If a phishing kit suspects
that the visitor is not a potential victim, a 404 “not found”,
403 “forbidden”, or 30x redirection response code [40] may be
returned by the server in lieu of the phishing page. Attackers
could also choose to display benign content instead.

Prior studies of browser blacklists have involved observation
or honeypotting of live phishing attacks [25], [6], [39], but
these tests did not consider cloaking. It is also difficult to
definitively identify cloaking techniques simply by observing
live sites. Our experimental design addresses this limitation.

A. Overview

At a high level, we deploy our own (sterilized) phishing
websites on a large scale, report their URLs to anti-phishing
entities, and make direct observations of blacklisting times
across major web browsers. We divide the phishing sites into
multiple batches, each of which targets a different entity.
We further sub-divide these batches into smaller groups with
different types of cloaking. Once the sites are live, we report
their URLs to the anti-phishing entity being tested, such that
the entity sees a sufficient sample of each cloaking technique.
We then monitor the entity’s response, with our primary metric
being the time of blacklisting relative to the time we submitted



each report. We collect secondary metrics from web traffic logs
of each phishing site. Our approach is thus empirical in nature,
however it is distinct from prior work because we fully control
the phishing sites in question, and, therefore, have ground truth
on their deployment times and cloaking techniques.

All the phishing sites that we used for all of our experiments
spoofed the PayPal.com login page (with permission from
PayPal, Inc.) as it appeared in mid-2017 (we discuss the
hosting approach in Section IV-C2). Our phishing sites each
used new, unique, and previously-unseen .com domain names,
and were hosted across a diverse set of IP addresses spanning
three continents. As part of our effort to reliably measure the
time between our report and browser blacklisting for each site,
we never reported the same phishing site to more than one
entity, nor did we re-use any domains. To summarize, each
experiment proceeded as follows:

1) Selecting a specific anti-phishing entity to test.
2) Deploying a large set of new, previously-unseen PayPal

phishing sites with desired cloaking techniques.
3) Reporting the sites to the entity.
4) Measuring if and when each site becomes blacklisted

across major web browsers.
We split our experiments into two halves: preliminary

testing of 10 anti-phishing entities (mid-2017) and full follow-
up testing of five of the best-performing entities (mid-2018).
The latter test involved a large sample size designed to
support statistically significant inferences. In between the two
tests, we disclosed our preliminary findings to key entities
to afford them the opportunity to evaluate any shortcomings
we identified. We discuss our approach in more detail in the
following sub-sections and present the results in Section V.

1) Targeted Web Browsers: We strove to maximize to-
tal market share while selecting the browsers to be tested.
In addition to traditional desktop platforms, we wanted to
measure the extent of blacklisting on mobile devices— a
market which has grown and evolved tremendously in recent
years [41]. We thus considered all the major desktop and
mobile web browsers with native anti-phishing blacklists, as
listed in Table I. Although we also identified a handful of other
web browsers with blacklist protection, such as CM Browser,
we did not test them due to their low market share [4].

2) Filter Types: We chose a set of request filtering tech-
niques based on high-level cloaking strategies found in a recent
study of .htaccess files from phishing kits [8]. Exhaustively
measuring every possible combination of request filters was
not feasible with a large sample size; we therefore chose a
manageable set of filtering strategies which we felt would be
effective in limiting traffic to broad yet representative groups
of potential victims while remaining simple (for criminals) to
implement and drawing inspiration from techniques found in
the wild [7]. Table III summarizes our filter selections.

It would not be responsible of us to disclose the exact condi-
tions required of each filter, but we can discuss them at a high
level. Filter A served as our control group; our expectation was
for every site in this group to be blacklisted at least as quickly
as other sites. Filter B sought to study how well mobile-only

TABLE II: Entities targeted by our experiments.

Entity (Report Location) Report Type URLs
Full + Preliminary Tests

APWG (reportphishing@apwg.org) E-mail
40 (prelim.)

396 (full)
per entity

Google Safe Browsing ([42]) Web
Microsoft SmartScreen ([43]) Web
PayPal (spoof@paypal.com) E-mail
PhishTank (phish-{username}@phishtank.com) E-mail

Preliminary Tests Only
ESET ([44]) Web
Netcraft ([45]) Web 40

per entityMcAfee ([46]) Web
US CERT (phishing-report@us-cert.gov) E-mail
WebSense (asa@websense.com) E-mail
10 Entities Total 2,380 URLs

TABLE III: Cloaking techniques used by our phishing sites.

Cloaking Filter Name HTTP Request Criteria
A Control Allow all

B Mobile Devices
Allow if user agent indicates:

Android or iOS

C
US Desktop
GSB Browsers

Allow if IP country (is/is not) US and user agent indicates:
Chrome, Firefox, or Safari; and

Windows, Macintosh, or Linux; and
not Opera, IE, or Edge; and

not iOS or Android
D

Non-US Desktop
GSB Browsers

E Block Known
Security Entities

Allow if user agent, referrer, hostname, and IP:
not known to belong to a security entity or bot

F “Real” Web
Browsers

Allow all; content retrieved asynchronously
during JavaScript onload event

phishing sites are blacklisted, coinciding with the recent uptick
in mobile users and phishing victims [28], [2]. Filters C
and D focus specifically on desktop browsers protected by
GSB, which span the majority of desktop users today. We
also included geolocation, which while not as frequent in the
wild as other cloaking types [8], is highly effective due to low
detectability and characteristics of spearphishing. A secondary
motivation was to see how well entities other than GSB protect
this group. Filter E is the most elaborate, but it also directly
emulates typical real-world phishing kits. It is based on top
.htaccess filters from a large dataset of recent phishing kits [8].
This filter seeks to block anti-phishing entities by hundreds of
IP addresses, hostnames, referrers, and user agents. Finally,
Filter F only displays phishing content if the client browser
can execute JavaScript, which may defeat simple script-based
web crawlers. This filter is common in modern search engine
cloaking [7] and further motivated by an ongoing study we
are conducting of JavaScript use in real-world phishing sites.
Although today’s phishing kits tend to favor straightforward
filtering techniques (namely approaches such as Filter E or
geolocation), growing sophistication and adoption of cloaking
(and other types of evasion) is technically feasible and to be
expected as a risk to the anti-phishing ecosystem.

3) Tested Entities: In addition to the blacklist operators
themselves, major clearinghouses, and PayPal’s internal anti-
phishing system, we wanted to test as many of the other types
of anti-phishing entities discussed in Section II-C as possible.
We started with a recently-published list of entities commonly
targeted for evasion by phishers [8]. We then made selections
from this list, giving priority to the more common (and thus
potentially more impactful) entities in today’s ecosystem. We
had to exclude some entities of interest, as not all accept direct



external phishing reports and thus do not fit our experimental
design. Also, we could not be exhaustive as we had to consider
the domain registration costs associated with conducting each
experiment. Table II summarizes our entity selections.

4) Reporting: When the time came for us to report our
phishing sites to each entity being tested, we would submit
the site URLs either via e-mail or the entity’s web interface
(if available and preferred by the entity). In all cases, we used
publicly-available submission channels; we had no special
agreements with the entities, nor did they know they were
being tested. In the case of the web submission channel, we
simply used a browser to submit each phishing site’s exact
URL to the entity. E-mail reports were slightly more involved,
as the industry prefers to receive attachments with entire
phishing e-mails in lieu of a bare URL. We thus used PayPal-
branded HTML e-mail templates to create lookalike phishing
messages. Each message contained a random customer name
and e-mail address (i.e. of a hypothetical victim) within one of
many body templates. We sent e-mails from unique accounts
across five security-branded domains under our control.

Reports of real-world phishing sites might be submitted in
the exact same manner by agents on behalf of victim brands.
Our reporting approach is thus realistic, though many larger
victim organizations contract the services of enterprise security
firms, which in turn have private communication channels to
streamline the reporting process.

B. Preliminary Tests

Our preliminary testing took place in mid-2017 and carried
out the full experimental approach from Section III-A on a
small scale. We will now detail the execution of each test.

One of our key goals was to minimize confounding effects
on our experimental results. In other words, we did not want
any factors other than our report submission and cloaking
strategy to influence the blacklisting of our phishing sites. As
part of this, we wanted to secure a large set of IP addresses,
such that no anti-phishing entity would see two of our sites
hosted on the same IP address. With the resources available
to us, we were able to provision 40 web servers powered
by Digital Ocean, a large cloud hosting provider [47] (we
informed Digital Ocean about our research to ensure the
servers would not be taken down for abuse [48]). Each server
had a unique IP address hosted in one of the host’s data centers
in Los Angeles, New York, Toronto, Frankfurt, Amsterdam,
or Singapore. Our batch size was thus 40 phishing sites per
preliminary test, for a total of 400 sites across the 10 entities
being tested. Within each batch, six sites used filter types A
and F, while seven used filter types B through E.

We also wanted to mimic actual phishing attacks as closely
as possible. We studied the classification of phishing URL
types submitted to the Anti-phishing Working Group’s eCrime
Exchange in early 2017 and crafted our URLs for each of the
40 phishing sites while following this distribution as closely
as possible [8], [49]. We registered only .com domains for
our URLs, as the .com TLD accounts for the majority of real-
world phishing attacks. In addition, we chose GoDaddy as our

TABLE IV: URL and filter distribution for each experiment.

Phishing URL Content
Sample URL (Type [8], [49]) Qty. Filters Used

Full Tests
Non-deceptive (random) (V)
http://www.florence-central.com/logician/retch/ 396 A (66), B (66), C (66),

D (66), E (66), F (66)
Preliminary Tests

Non-deceptive (random) (V)
http://receptorpeachtreesharp.com/cultivable/ 10 A (1), B (2), C (2),

D (2), E (2), F (1)
Brand in Domain (IVa)
http://www.https-official-verifpaypal.com/signin 6

Deceptive Domain (IVb)
http://services-signin.com/login/services/account/ 6

Brand in Subdomain (IIIa)
http://paypal1.com.835anastasiatriable.com/signin 6

Deceptive Subdomain (IIIb)
http://services.account.secure.lopezben.com/signin 6

Deceptive Path (II)
http://simpsonclassman.com/paypa1.com/signin 6

A (1), B (1), C (1),
D (1), E (1), F (1)

registrar, which is among the most-abused registrars by real
phishers [1]. Furthermore, to prevent crawlers from landing
on our phishing sites by chance (i.e. by requesting the bare
hostname), paths were non-empty across all of our URLs.

Using URLs that appear deceptive is a double-edged sword:
while it allows us to gain insight into how various URL types
are treated by entities, it is also a factor which may skew
blacklisting speed. However, we decided to proceed with this
in mind as the purpose of the preliminary tests was to observe
more than measure, given the use of a relatively small sample
size per batch. Table IV shows the distribution of URL types
and filters per batch of sites.

We registered the required domain names and finalized
configuration of our infrastructure in May 2017. In July,
we started our experiments by systematically deploying and
reporting our phishing sites. For each day over the course
of a 10-day period, we picked one untested entity at random
(from those in Table II), fully reported a single batch of URLs
(over the course of several minutes), and started monitoring
blacklist status across each targeted web browser. Monitoring
of each URL continued every 10 minutes for a total of 72
hours after deployment. Over this period and for several days
afterward, we also logged web traffic information to each
of our phishing sites in an effort to study crawler activity
related to each entity. Prior empirical tests found blacklists to
show their weakness in early hours of a phishing attack [6].
Our 72-hour observation window allows us to study blacklist
effectiveness during this critical period while also observing
slower entities and potentially uncovering new trends.

C. Responsible Disclosure

Our analysis of the preliminary tests yielded several security
recommendations (discussed in Section VI). We immediately
proceeded to disclose our findings to the directly impacted
entities (i.e. browser vendors, the brand itself, and major
blacklist operators) which we also intended to re-test. We held
our first disclosure meeting with PayPal in August 2017. Fol-
lowing PayPal’s legal approval, we also disclosed to Google,
Microsoft, Apple, Mozilla, and the APWG in February 2018.
Each meeting consisted of a detailed review of the entity’s
performance in our study, positive findings, specific actionable
findings, and high-level comparisons to other entities. Our



disclosures were generally positively received and resulted
in close follow-up collaboration with Google, Mozilla, and
the APWG; this ultimately resulted in the implementation of
effective blacklisting within mobile GSB browsers and general
mitigations against certain types of cloaking. We clearly stated
that we would repeat our experiments in 4-6 months and
thereafter publish our findings.

We did not immediately disclose to the blacklists powering
Opera as we had not originally expected to have the resources
to re-test a fifth entity. Additionally, given lesser short-term
urgency with respect to the remaining entities (and in the
absence of close relationships with them), at the time we felt
it would be more impactful to disclose to them the prelimi-
nary findings alongside the full test findings. This approach
ultimately allowed us to better guide our recommendations
by sharing deeper insight into the vulnerabilities within the
broader ecosystem. After the completion of the full tests,
we reached out the all remaining entities via e-mail; all but
PhishTank and Opera responded and acknowledged receipt of
a textual report containing our findings. US CERT and ESET
additionally followed up for clarifications once thereafter.

D. Full-scale Tests

We believed that key ecosystem changes resulting from our
disclosures would still be captured by our original experi-
mental design. Thus, we did not alter our retesting approach
beyond increasing the scale to enable statistically significant
observations. In addition, rather than using the URL distribu-
tion from the preliminary experiments, we solely used non-
deceptive paths and hostnames (i.e. with randomly-chosen
English words) in order to remove URL classification as a
possible confounding factor in our cloaking evaluation.

We registered the required domains in May 2018 and
initiated sequential deployment of our full-scale tests in early
July. We re-tested all entities to which we disclosed. As our
budget ultimately allowed for an additional entity, we decided
to also include PhishTank for its promising performance in
the preliminary test. Each of the resulting five experiment
batches consisted of 396 phishing sites, evenly split into six
groups for each cloaking technique. Our reporting method
did not change, though we throttled e-mailing such that the
reports were spread over a one-hour period. Reporting through
Google and Microsoft’s web interfaces spanned a slightly
longer period of up to two hours due to the unavoidable manual
work involved in solving required CAPTCHA challenges.

E. Sample Size Selection

For our full tests, we chose a sample size of 384 phishing
sites for each entity. Our goal was to obtain a power of
0.95 at the significance level of 0.05 in a one-way inde-
pendent ANOVA test, which, for each entity, could identify
the presence of a statistically significant difference in mean
blacklisting speed between the six cloaking filters. Based on
Cohen’s recommendation [50] and our preliminary test results,
we assumed a medium effect size (f ) of 0.25. We added 12
sites (2 per filter) to each experiment to serve as backups in

Fig. 1: PhishFarm framework architecture.

case of unforeseen technical difficulties. All sites ultimately
delivered 100% uptime during deployment, thus we ended
up with an effective sample size of 396 per experiment.
While the assumption of f=0.25 introduced some risk into
our experimental design, we accepted it given the high cost of
registering a new .com domain for each site.

IV. PHISHFARM TESTBED FRAMEWORK

In order to execute our experimental design at scale, we de-
signed PhishFarm: a comprehensive framework for deploying
phishing sites, reporting them to anti-abuse entities, and mea-
suring blacklist response. The framework operates as a web
service and satisfies three important requirements: automation,
scalability, and reliability. We eliminated as many manual
actions as technically feasible to ensure that the difference
between launching hundreds and thousands of sites was only
a matter of minutes. Actual site deployment can thus happen
instantly and on-demand. Apart from up-front bulk domain
registration (IV-A) and reporting phishing through a web form,
all framework components feature end-to-end automation.

The framework consists of five interconnected components
as shown in Figure 1: bulk domain registration and DNS
setup, stateless cloud web servers to display the phishing
sites, an API and database that manages configuration, a client
that issues commands through the API, and a monitoring
system that regularly checks in which browsers each phishing
is blacklisted. In total, we wrote over 11,000 lines of PHP,
Java, and Python code for these backend components. We
extensively tested each component— in particular, the hosting
and monitoring infrastructure— to verify correct operation.

A. Domain and DNS Configuration

A core component of any phishing site is its URL, which
consists of a hostname and path [49]. Our framework includes
a script to automatically generate hostnames and paths per the
experimental design. We then manually register the required
domain names in bulk and point them to our cloud hosting
provider’s nameservers. Finally, we automatically create DNS



records such that the domains for each experiment are evenly
spread across the IP addresses under our control. We set up
wildcard CNAME records [51] such that we could program-
matically configure the subdomain of each phishing site on
the server side. In total, registration of the 400 preliminary
domains took about 15 minutes, while registration of the 1,980
domains for the full tests took 30 minutes; apart from the
domain registration itself, no manual intervention is needed.

B. Research Client
We implemented a cross-platform client application to

control the server-side components of the framework and
execute our research. This client enables bulk configuration
of phishing sites and cloaking techniques, bulk deployment of
experiments, automated e-mail reporting, semi-automated web
reporting, monitoring of status, and data analysis.

C. Server-Side components
The server-side components in our framework display the

actual phishing sites based on dynamic configuration. They
are also responsible for logging request data for later analysis
and monitoring blacklist status.

1) Central Database and API: At the heart of our frame-
work is a central API that serves as an interface to a database
with our phishing site and system state. For each site, the
database also maintains attributes such as date activated,
reported, and disabled; blacklisting status; site and e-mail
HTML templates; server-side and JavaScript request filtering
code; and access logs. We interact with this API via the client
whenever we define new sites or deploy sites as part of an
experiment. All traffic to and from the API is encrypted.

2) Hosting Infrastructure: Our hosting infrastructure con-
sists of Ubuntu cloud servers which run custom intermediate
software on top of Apache. The intermediate software captures
all requests and enables dynamic cloaking configuration and
enhanced traffic logging. Each server obtains all of its config-
uration from the API, which means that the number of servers
can flexibly be chosen based on testing requirements (40 in our
case). When an HTTP request is received by any server, the
server checks the request URL against the list of live phishing
sites from the API, processes any cloaking rules, responds with
the intended content, and logs the request. In order to quickly
handle incoming requests, system state is cached locally on
each server to minimize API queries.

We served all our phishing sites over HTTP rather than
HTTPS, as this was typical among real-world phishing sites
at the time we designed the preliminary tests [1]. While our
framework supports HTTPS, we did not wish to alter the
experimental design between tests. Both approaches generate
potential artifacts that might benefit the anti-phishing ecosys-
tem: unencrypted sites allow network-level packet sniffing,
while encrypted sites leave an evidence trail at the time a
certificate is issued. We mitigated the former risk to a large
extent through the design of our monitoring system.

Our framework supports arbitrary, brand-agnostic web page
content to be displayed for each phishing site. For our exper-
iments, we hosted all resources (e.g. images and CSS) locally

on each server to avoid confounding detection through external
web requests to these files. In the wild, we have observed
that sophisticated phishing kits follow a similar strategy to
reduce detectability, though today’s typical kits merely embed
resources from the legitimate website.

3) Monitoring Infrastructure: The purpose of the moni-
toring system is to identify, at a fine granularity, how much
time elapses before a reported phishing site is blacklisted
(if at all). To obtain a clear picture of the early hours of
blacklist response, we configured the monitoring system to
access each live phishing URL at least once every 10 minutes
in each target desktop browser (the shortest interval feasible
given our resources). We check the blacklist status of each
URL by analyzing a screenshot of the respective browser
window; this is similar to the approach taken by Sheng et
al [6]. We chose this approach for its universal applicability
and lack of dependencies on browser automation libraries,
which commonly force-disable phishing protection. For our
purposes, it sufficed to check if the dominant color in each
image [52] was similar to red (used in the warning messages
of the browsers we considered). Although this image-based
approach proved reliable and can be fully automated, it does
not scale well because each browser requires exclusive use of
a single system’s screen.

To satisfy the scalability requirement, our monitoring sys-
tem follows a distributed architecture with multiple au-
tonomous nodes that communicate with the API; each node
is a virtual machine (VM) that runs on a smaller set of
host systems. Software on each VM points a browser to the
desired URL via command line and sends virtual keystrokes,
as needed, to close stale tabs and allow for quick page
loads. During our experiments, we used three types of nodes:
Mac OS X 10.12 VMs with Chrome, Safari, Opera, and
Firefox; Windows 10 VMs with Edge and Internet Explorer
(IE) 11; and Windows 8.1 VMs with IE 11. In total, the
full experiments required 31 desktop nodes across four host
machines (collectively with 18 Intel Core i7 CPU cores and
96 Gb of RAM) to deliver the required level of monitoring
performance and redundancy. Each node informs the API of
the browsers it supports; it then awaits a command consisting
of a set of URLs for a target browser, and in real time, reports
the monitoring results back to the API. We freshly installed
the latest stable version of each browser at the time of each
test and kept default security settings (or, in the case of IE
and Edge, recommended settings when prompted).

We were unable to obtain such a large number of mobile
devices, and official emulators at the time would force-disable
blacklist warnings. Thus, we only tested mobile browsers
hourly and relied on our observation that their behavior was
tied to the behavior their desktop counterparts. We used a
physical Samsung Galaxy S8 and Google Pixel phone to
test mobile Chrome, Firefox, and Opera; and an iPhone 7
(preliminary) or 8 (full) to test mobile Safari. A future version
of the framework could be improved to leverage Android VMs,
in lieu of physical or emulated devices, to perform monitoring
similar to that of desktop browsers.



TABLE V: Overview of crawler and blacklisting activity across all experiments.

Phishing Sites
Deployed

Crawler(s) Attempted
Retrieval

Successful Crawler
Retrievals

Crawled Sites
Blacklisted

Mean Time Before
1st Blacklisting

Mean Page Loads
per Site

w/ Cloaking w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

Prelim. 340 60 294
(86.5%)

51
(85.0%)

156
(53.1%)

49
(96.1%)

124
(42.2%)

42
(82.4%)

173
min.

79
min 80 464

Full 1650 330 1333
(80.8%)

271
(82.7%)

818
(61.4%)

264
(97.4%)

306
(23.0%)

134
(49.4%)

238
min.

126
min. 162 334

Lastly, we wanted to ensure that the large number of re-
quests from our monitoring system did not affect the blacklist
status of our phishing sites (i.e. by triggering heuristics or
network-level analysis [6]). Therefore, rather than displaying
the phishing content in the monitoring system’s browsers, we
simply displayed a blank page with a 200 status code. While
we had the option of querying the GSB API directly as a
supplement to empirically monitoring the browsers it protects,
we chose not to do so for the same reason. Finally, our
monitors used an anonymous VPN service (NordVPN) in an
effort to bypass any institution- and ISP-level sniffing.

D. Ethical and Security Concerns

Over the course of our experiments, we were careful in
ensuring that no actual users would visit (let alone submit
credentials to) our phishing sites: we only ever shared the site
URLs directly with anti-phishing entities, and we sterilized
the login forms such that passwords would not be transmitted
in the event of form submission. In the hands of malicious
actors with access to the necessary hosting and message
distribution infrastructure, and with malicious modifications,
our framework could potentially be used to carry out real and
evasive phishing attacks on a large scale. We will thus not
release the framework as open source software; however, we
will share it privately with vetted security researchers.

Another potential concern is that testing such as ours could
degrade the response time of live anti-phishing systems or
negatively impact data samples used by their classifiers. Given
the volume of live phishing attacks today [2], we do not
believe that our experiments carried any adverse side-effects;
the entities to which we disclosed did not raise any concerns
regarding this. With respect to classifiers based on machine
learning, effective methodology has already been proposed to
ensure that high-frequency phishing sites do not skew training
samples [20]. Nevertheless, it would be prudent for any party
engaged in long-term or high-volume testing of this nature to
first consult with any targeted entities.

V. EVALUATION

PhishFarm proved to deliver reliable performance over the
course of our tests and executed our experimental methodology
as designed. Following the completion of all tests, we had
collected timestamps of when blacklisting occurred, relative
to the time we reported the site, for each of our phishing
sites in each of the desktop and mobile browsers tested. This
totaled over 20,000 data points across the preliminary and
full tests, and had added dimensionality due to the various
entities and cloaking techniques tested. Table V shows the

breakdown of crawler and blacklisting activity on our phishing
sites. Overall, we found that sites with cloaking were both
slower and less likely to be blacklisted than sites without
cloaking: in the full tests, just 23.0% of our sites with cloaking
(which were crawled) ended up being blacklisted in at least
one browser— far fewer than the 49.4% sites without cloaking
which were blacklisted. Cloaking also slowed the average time
to blacklisting from 126 minutes (for sites without cloaking)
to 238 minutes.

However, closer scrutiny is required to make insightful
conclusions about the conditions under which cloaking is
effective, as we found that each anti-phishing entity exhib-
ited distinctive blacklisting of different cloaking techniques
alongside varying overall speed. For example, the mobile-only
Filter B showed 100% effectiveness against blacklisting across
all entities. On the other hand, the JavaScript-based Filter F
was 100% effective for some entities, delayed blacklisting
for others, but was in fact more likely to be blacklisted
than Filter A by others still. In many cases, there was also
a lack of blacklisting of Filter A sites (i.e. those without
cloaking). Entities— in particular, the clearinghouses— at
times failed to ultimately blacklist a reported site despite
extensive crawling activity. Although it is possible that our
direct reporting methodology led to some sites being ignored
altogether, the exceptional performance of GSB with respect
to Filter A shows that a very high standard is realistic. We
detail each entity’s behavior in Section V-F.

To provide meaningful measurements of entity performance
with respect to different browsers and cloaking filters, we
propose a scoring system in Section V-B which seeks to
capture both the response time and number of sites blacklisted
by each anti-phishing entity for each browser and/or filter. In
addition, we summarize our findings visually in Figures 2 and
3 by plotting the cumulative percentage of sites blacklisted
over time, segmented by each browser or by each cloaking
technique, respectively. Lastly, we analyze web traffic logs to
make observations about the distinctive behavior of each anti-
phishing entity. Although much of our analysis focuses on the
results of the large-scale full tests, we also make comparisons
to the preliminary test data when appropriate.

A. Crawling Behavior

Of all sites that we launched during the preliminary and full
tests, most (81.9%) saw requests from a web crawler, and a
majority of sites therein (66.0%) was successfully retrieved at
least once (i.e. bypassing cloaking if in use). In a handful of
cases, our reports were ignored by the entities and thus resulted
in no crawling activity, possibly due to volume or similarity



TABLE VI: Aggregate entity blacklisting performance scores
in the full tests (colors denote subjective assessment: green—
good, yellow— lacking, red— negligible blacklisting)

GSB Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.942 0 0.030 0.899 0.104 0.692 0.533
IE 0 0 0 0 0 0 0
Edge 0 0 0 0 0 0 0

Sbf

Opera 0 0 0 0 0 0 0
PBf 0.970 0 0.031 0.953 0.106 0.712 0.457 S

TBf (min.) 112 N/A 50 100 81 107 0.947 C

SmartScreen Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.005 0 0.005 0 0 0.009 0.004
IE 0.176 0 0.003 0 0.301 0.411 0.296
Edge 0.183 0 0.003 0 0.329 0.421 0.311

Sbf

Opera 0 0 0.005 0 0 0 0
PBf 0.212 0 0.016 0 0.364 0.455 0.038 S

TBf 548 N/A 2889 N/A 391 298 0.649 C

APWG Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.563 0 0.356 0 0.777 0 0.339
IE 0.113 0 0 0 0.626 0 0.246
Edge 0.129 0 0 0 0.761 0 0.297

Sbf

Opera 0.242 0 0.185 0 0.545 0 0.262
PBf 0.576 0 0.344 0 0.803 0 0.328 S

TBf 194 N/A 243 N/A 125 N/A 1 C

PhishTank Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.077 0 0 0 0 0.026 0.024
IE 0.096 0 0 0 0 0 0.026
Edge 0.085 0 0 0 0 0 0.028

Sbf

Opera 0.074 0 0 0 0 0.024 0.032
PBf 0.106 0 0 0 0 0.136 0.025 S

TBf 386 N/A N/A N/A N/A 2827 0.467 C

PayPal Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.133 0 0.149 0.052 0.198 0.167 0.104
IE 0.102 0 0.040 0 0.074 0.137 0.140
Edge 0.123 0 0.056 0.046 0.193 0.163 0.160

Sbf

Opera 0.119 0 0.029 0 0.191 0.120 0.143
PBf 0.167 0 0.172 0.078 0.288 0.182 0.138 S

TBf 675 N/A 440 1331 1077 338 0.995 C

to previous reports; we mitigated this risk through the large
sample size and discuss it in more detail in Section V-G. The
distribution of crawler hits was skewed left, characterized by
a small number of early requests from the entity to which we
reported, followed by a large stream of traffic from it as well
as other entities. Importantly, different cloaking techniques
showed no significant effect on the time of the first crawling
attempt; the median response time ranged from 50 to 53
minutes, from the time of reporting, for all filter types.

During our full experiments, only sites which were crawled
were ultimately blacklisted. Generally, the crawling also had
to result in successful retrieval of the phishing content for
blacklisting to occur, though in 10 cases (all in the GSB
experiment with Filter D), a site would be blacklisted despite
a failed retrieval attempt; possible factors for this positive
phishing classification are described in prior work [20].

B. Entity Scoring

For each entity tested, let U be the set of phishing URLs
reported to the entity, let B be the set of browsers monitored,
let T be the set of observed blacklisting times, let F be the
set of cloaking filters used, and let MS denote the worldwide
browser market share. Additionally, we define the value of the
function accessible(b, f) to be true if and only if a phishing
site with filter f is designed to be accessible in browser b.

For each URL-browser combination in B
Ś

U , per Formula
1, we define a normalized performance score SURLb

on the
range r0, 1s, where 0 represents no blacklisting and 1 repre-
sents immediate blacklisting relative to the time reported. The
score decays linearly over our 72-hour observation window

TABLE VII: Formulas for aggregate scores (per test).

@ b, URL P B
ą

U, SURLb
“ (1)

#

1´
TURL blacklistedb

´ TURL reported

Twindow
blacklisted in b

0 otherwise

@ b, f P B
ą

F, Sbf “
ÿ

URL, FURL“f

SURLb

n
(2)

@ b P B, Sb “
ÿ

f, accessiblepb, fq

Sbf

n
(3)

S “
ÿ

b

MSb

MSB
¨ Sb (4)

(e.g. a site blacklisted after 36 hours would have SURLb
“

0.5). We take the average of all these URL-browser scores for
each browser-filter combination, as Sbf , per Formula 2.

We further aggregate the Sbf scores to meaningfully sum-
marize the protection of each browser by each entity: the
browser score Sb, as per Formula 3, is the average of all Sbf

for a given browser b, but limited to filters f accessible in
b. To gauge the blacklisting of each cloaking filter, we report
PBf as the raw proportion of sites blacklisted in at least one
browser for each respective filter. Note that PBf will always
be greater than or equal to any Sbf because the former is not
reduced by poor timeliness; we thus additionally report TBf ,
the mean time to blacklisting for each filter f (in minutes).

To capture the overall real-world performance of each entity,
we average all Sb, weighted by the market share of each
browser, to produce S, as per Formula 4. The scores S allow
us to efficiently compare the performance between entities
and would be useful in modeling long-term trends in future
deployments of PhishFarm. We also include and the proportion
of all sites crawled, C, to illustrate the entity’s response effort.

We present the aforementioned aggregate scores in Table VI
for all entities in the full tests. Indeed, the large number
of 0 or near-0 scores was disappointing and representative
of multiple ecosystem weaknesses which we discuss in the
following sections. Scores for the preliminary tests are found
in Table VIII in Appendix II. Note that because Chrome,
Firefox, and Safari showed nearly identical scores across
all experiments, we simplify the table to report the highest
respective score under the GSB heading. We make a similar
simplification for IE 11 on Windows 10 and 8.1.

We do not separately report the performance of mo-
bile browsers because we observed the behavior of mobile
browsers to be directly related to their desktop counterparts.
During the preliminary tests, mobile Firefox and Opera mir-
rored the blacklisting— and thus also the scores— of their
desktop versions. Mobile Chrome and Mobile Safari showed
no blacklist warnings whatsoever for any of our phishing
sites and thus receive Sb scores of 0. During the full tests,
the behavior of mobile Chrome, Safari, and Opera remained
unchanged. Firefox stopped showing blacklist warnings, and
its scores thus dropped to 0 (the 0 scores of mobile browsers
represented a serious issue; this was corrected after we con-
tacted Google and Mozilla after the full tests, as discussed in
Section VI-A1). We did not test mobile versions of Microsoft



Fig. 2: Blacklisting over time in each browser (full tests).

browsers because mobile IE is no longer supported; Edge for
Android and iOS was released after we began testing.

C. Preliminary vs. Full Tests

We observed many core similarities when comparing the
performance same entity between the preliminary and full
tests. We also saw improvements related to the recommenda-
tions we shared during our disclosure meetings, in particular
with respect to the APWG’s treatment of Filters C and E.
Notably, during the full tests, crawler traffic to sites with
cloaking increased by 44.7% relative to sites without cloaking,
while the overall traffic volume also increased by 89.7%. We
discuss all entity-specific improvements in section V-F.

The comparison also revealed some surprises, however. The
main experimental difference between the two sets of tests,
apart from sample size, was our exclusive use of random URLs
in the full tests. On the other hand, the preliminary tests in-
cluded a sampling of deceptive URLs. In the preliminary tests,
we observed that Edge and IE were quick to display blacklist
warnings for sites with certain deceptive URLs. In fact, many
Type IV URLs (with domain names containing either the
PayPal brand or deceptive keywords) saw proactive zero-hour
warnings in these browsers without any prior crawler activity.
Figure 5b in Appendix II shows the effect of URL type on
blacklisting in the preliminary tests. During the full tests, no
phishing site was blacklisted unless it had previously been
visited by a crawler. In the absence of deceptive URLs, we
thus observed all the blacklists to be purely reactive; this, in
turn, led to lower Sb scores of Edge, IE, and sites with Filter
B, and a lower overall score S for SmartScreen.

D. Browser Performance

Figure 2 shows the percentage of our phishing sites black-
listed over the course of all the full experiments, grouped by
browser, but limited to sites intended to be accessible in each
respective desktop browser (i.e. Filter B was excluded for all
and Filters C and D were excluded for IE, Edge, and Opera).

Chrome, Safari, and Firefox consistently exhibited the high-
est overall blacklisting speed and coverage, but were still far
from covering all cloaked sites. Opera generally outperformed
the Microsoft browsers during the first four hours, but was later
overtaken for the remainder of our experimental period. In the

Fig. 3: Effect of cloaking on blacklisting over time (full tests).

absence of deceptive phishing URLs, Edge and IE simply lost
their edge in the full tests; Figure 5c in Appendix II shows
their superior performance in the preliminary tests.

1) Consistency Between Browsers: Chrome, Firefox, and
Safari are all protected by the GSB blacklist; our tests
confirmed these browsers do consistently display blacklist
warnings for the same set of websites. However, during our full
tests, Chrome displayed warnings up to 30 minutes earlier than
Safari, and up to one hour earlier than Firefox; the warnings
became consistent after the five-hour mark. Upon further
investigation, we believe that this disparity was caused by
different caching implementations of the GSB Update API (v4)
in each browser (this API ensures privacy and quick lookups
but requires periodic refreshes of the entire blacklist [53]).
Latency is a notable shortcoming of blacklists [6] and it
appears that browser blacklist caching can still be improved
from a security perspective.

Edge and IE 11 (both protected by SmartScreen) proved
far less consistent. In the full tests, Edge displayed warnings
up to two hours earlier and covered more sites than IE until
the 24-hour mark. However, in the preliminary tests— which
involved deceptive URLs detectable by heuristics— IE would
often display preemptive warnings for sites which would not
be blocked in Edge for several hours, if at all. These deviations
were evident in the preliminary APWG, SmartScreen, and
PayPal tests as per Table VIII in Appendix II.

E. Filter Performance

Figure 3 shows the percentage of our phishing sites black-
listed over the course of all the full experiments, grouped by
cloaking filter type. Because this summary view masks some
of the distinctive per-entity behavior we observed in Table VI,
Figure 4 in Appendix I should be consulted as a supplement.
Note that because these figures consider all browser-filter
combinations, their Y-axes differ from Figure 2 and the Sbf

scores in Table VI. Nevertheless, they all convey the finding
that there exist considerable gaps in today’s blacklists.

The overall earliest blacklisting we observed occurred after
approximately 40 minutes, in Chrome. Significant growth took
place between 1.5 and 6.5 hours and continued at a slower
rate thereafter for the full 72-hour period. Compared to sites
without cloaking, our cloaking techniques showed moderate



to high effectiveness throughout the life of each phishing site.
Filter B saw no blacklisting whatsoever across any desktop
or mobile browser we tested. Filters E and F proved most
effective in the early hours of deployment, while the geo-
specific Filters C and D saw the lowest amount of blacklisting
in the long term. Between 48 and 72 hours after deployment,
sites with Filter E overtook Filter A sites by a small margin;
upon further analysis, we found that this was due to a high
level of interest in such sites following reporting to the APWG.
All other types of sites with cloaking were on average less
likely to be blacklisted than sites without.

F. Entity Performance

Although no single entity was able to overcome all of
the cloaking techniques on its own, collectively the entities
would be successful in doing so, with the exception of Filter
B (this has since been corrected as per the discussion in
Section VI-A1).

1) Google Safe Browsing: Due to the high market share
of the browsers it protects, GSB is the most impactful anti-
phishing blacklist today. It commanded the highest score S
in both the preliminary and full tests. GSB’s key strength lies
in its speed and coverage: we observed that a crawler would
normally visit one of our sites just seconds after we reported it.
94.7% of all the sites we reported in the full tests were in fact
crawled, and 97% of sites without cloaking (Filter A) ended
up being blacklisted. Blacklisting of Filter D was comparable,
and Filter F improved over the preliminary tests.

However, GSB struggled with Filter E, which blocked
hostnames specific to Google crawlers. It also struggled with
Filter C, which denied non-US traffic. The reason the re-
spective PBf scores are low is that if the initial crawler
hit on the phishing site failed, GSB would abandon further
crawling attempts; the initial hit almost always originated from
a predictable non-US IP address. Another weakness appears
to be data sharing, as none of the sites we reported to GSB
ended up being blacklisted in Edge, IE, or Opera.

2) Microsoft SmartScreen: SmartScreen proved to be the
only native anti-phishing blacklist to leverage proactive URL
heuristics to blacklist phishing sites, which allowed Microsoft
browsers to achieve high scores during the preliminary tests.
These heuristics were mainly triggered by URLs with a
deceptive domain name. In the preliminary tests, Edge proved
to be exceptionally well-protected, achieving a top Sb score
of 0.87— the highest of any browser.

In the full tests, the performance of IE improved over the
preliminary tests and became more consistent with that of
Edge. Surprisingly, SmartScreen was more likely to blacklist
sites with cloaking than those without, possibly due to use
of classification of cloaking (which would be commendable)
alongside low trust of our phishing reports (see Limitations).

Reporting to SmartScreen did not seem to significantly
affect any non-Microsoft browsers; the entity thus shares a
similar shortcoming with GSB. SmartScreen was also among
the slowest entities to reactively respond to phishing reports,
and its overall coverage was poor, which is its key weaknesses.

3) APWG: The APWG was the second-highest scoring
entity in our full tests and showed consistent protection of
all browsers. Its score S increased substantially compared to
the preliminary tests due to improvements to bypass Filters C
and E, which allowed APWG reports to result in blacklisting
of such sites in GSB browsers— something not achieved when
we reported directly to GSB. The APWG also generated the
highest level of crawler traffic of any entity we tested.

Unfortunately, the APWG failed to blacklist any sites with
Filter D or F in the full tests; its preliminary success proved
to have been related solely to the detection of deceptive URLs
by IE and Edge. Interestingly, we saw a large increase in the
blacklisting of sites with Filter E after the 24-hour mark; after
analyzing the traffic logs we believe that this is due to data
sharing with PayPal (this trend is also reflected in Figure 4e).

4) PhishTank: PhishTank is a community-driven clearing-
house that allows human volunteers to identify phishing con-
tent [54]; it also leverages a network of crawlers and partners
to aid in this effort. It was the second-highest performer in
our preliminary tests thanks to its expeditious blacklisting in
GSB browsers. In the full tests, we were surprised to see that
only 46.7% of sites reported were crawled, and very few sites
were ultimately blacklisted. Despite this, PhishTank generated
the second-highest volume of total crawler traffic. We do not
know the reasons for its shortcomings and PhishTank did not
reply to our disclosure; we suspect that the manual nature of
classification by PhishTank may be a limiting factor.

5) PayPal: During the preliminary tests, PayPal’s own
abuse reporting service struggled to bypass Filters D and F, but
overcame the latter in the full experiments while maintaining
a moderate degree of blacklisting. Its protection of Opera also
improved between the two tests. Despite crawling all but two
of the sites we reported in the full tests, the average response
time and browser protection ended up being poor overall. We
cannot disclose the reasons for this but expect to see a future
improvement as a result of our findings.

6) Remaining Entities: Performance scores for entities
only included in the preliminary tests are found in Table VIII
within Appendix II. High-level descriptions of each follow.

All sites we reported to ESET ended up being crawled, but
only a fraction of those– all with Filter A– were actually black-
listed. Overall timeliness was poor, though the blacklisting did
span multiple browsers. Netcraft yielded the best protection
of Opera in the preliminary tests, but overall it struggled
with most of our cloaking techniques and did not deliver
timely blacklisting. In retrospect, given the unexpectedly poor
performance of PhishTank in the full tests, we would have
been interested in re-testing Netcraft. Reports to the US CERT
led to minimal crawler activity and blacklisting; disregarding
heuristics from the Microsoft browsers, only a single site was
blacklisted. Phishing reports we sent to McAfee effectively
bypassed Filter A and Filter E but only appeared to lead to
timely blacklisting in Microsoft Edge. Reports to WebSense
had no effect beyond crawler traffic related to the URL
heuristics used by Microsoft; while we were hopeful the e-
mail reporting channel we used would prove fruitful, this is



understandable given that the company focuses on protection
of its enterprise customers.

G. Limitations

Our findings are based on a controlled (to the extent possible
without sending out real spam e-mails) empirical experiment
and observations from a large set of supporting metadata
and a high volume of anti-abuse crawler traffic. Our study
focuses exclusively on native phishing blacklist protection that
is available by default in the browsers and platforms tested.
Systems with third-party security software may see enhanced
protection [6], though cloaking can also have an impact on
systems powering such software.

Within its scope, our analysis should still be considered
with certain limitations in mind. We suspect that real-world
blacklisting of phishing attacks may be more timely than
what our results otherwise suggest, as our efforts to isolate
cloaking as a variable in our experimental design (i.e. by
using randomized domain names, never rendering the actual
phishing content in browsers being monitored, and using .com
domains months after registration) also eliminated many of
the methods that the ecosystem can use to detect or classify
phishing (e.g. URL-, network-, or DNS-based analysis). How-
ever, this reduced detectability is offset, to an extent, by the
possibility of malicious actors to likewise evade such forms of
detection. We observed in the preliminary tests that only URLs
containing brand names were quicker to be blacklisted than
others; in the wild, there is also a shifting tendency to abuse
compromised infrastructure and distribute random phishing
URLs in lieu of more deceptive alternatives [8], [49]. In terms
of factors under our control, it was not financially feasible to
achieve a one-to-one mapping between IP addresses and all of
our domains; this is a skewing factor which may have acted in
favor of blacklists in the full tests, such as with the 10 Filter
D sites which were blacklisted despite not being successfully
retrieved during the GSB experiment.

Finally, we only submitted a single and direct report for each
phishing site deployed. Although real-world phishing sites
might see a much higher volume of automated reports (e.g.
from sources such as spam filters), the volume of per-URL
phishing reports in the wild can in fact be reduced by attackers
(e.g. through the use of redirection links). More importantly,
direct reports such as ours (in particular to the blacklist
operators) might be subject to more suspicion because anti-
phishing entities must account for adversaries who willingly
submit false reports or seek to profile crawling infrastructure.
Although the blacklist operators to which we disclosed did not
express concern with our reporting methodology, we learned
that crawling infrastructure used to respond to direct reports
is indeed designed to be unpredictable to mitigate adversarial
submissions. SmartScreen’s lower crawl rate may be explained
by this; GSB, on the other hand, consistently responded
quickly and seemed to give our direct reports a high level
of priority. It is therefore possible that either classification of
reporting channel abuse works very accurately, or that report-
ing channels are more vulnerable to adversarial submissions

than what the entities otherwise believe; regardless, to improve
the future effectiveness of reporting, we propose an alternative
approach in Section VI-B2.

Ultimately, if each report represents a chance that a phishing
site will be blacklisted, we believe that our experimental
design still captures trends therein; moreover, our findings with
respect to cloaking effectiveness are consistent with internal
PayPal e-mail and web traffic data pertaining to actual victims
of phishing. To address its current limitations, our framework
could be adapted to follow a different (possibly collaboratively
arranged) reporting methodology, consider a broader range of
cloaking techniques, or even be applied to proactively-detected
live phishing URLs for which cloaking can be profiled.

1) Statistical Tests: In the full tests, we were surprised to
find the blacklisting performance of each entity with respect to
the different filters to have far more clear-cut gaps than in the
preliminary tests; 11 of the 30 the per-entity filter groups saw
no blacklisting whatsoever (per Table VI). Although ANOVA
as originally planned could still be meaningfully applied to
the subset of entities which had three or more filter groups
that satisfied homogeneity of variance [50] (i.e. had some
blacklisting activity), we chose not to perform such tests as
the resulting power would be below our target, and instead
relied on direct observations supported by crawler metadata. If
our experiment were to be repeated to validate improvements
in blacklisting or continuously test the ecosystem, we believe
that statistical tests could be highly useful in assessing whether
per-entity blacklisting performance improved significantly for
each respective cloaking filter.

VI. SECURITY RECOMMENDATIONS

Based on analysis of our experimental findings, we propose
several possible improvements to the anti-phishing ecosystem.

A. Cloaking

Our first set of recommendations focuses specifically on the
cloaking techniques we tested.

1) Mobile Users: We believe that the highest priority
within the current ecosystem should be effective phishing
protection for mobile users. Such users are not only inher-
ently more vulnerable to phishing attacks [41], but now also
comprise the majority of web traffic [4].

Our work has been impactful in better securing mobile users
by enhancing existing anti-phishing systems. For over a year
between mid-2017 and late 2018, GSB blacklists (with nearly
76% global market share) simply did not function properly on
mobile devices: none of our phishing sites with Filter A, E
or F (targeting both desktop and mobile devices) showed any
warnings in mobile Chrome, Safari, or Firefox despite being
blacklisted on desktop. We confirmed the disparity between
desktop and mobile protection through periodic small-scale
testing and by analyzing an undisclosed dataset of traffic to
real phishing sites. Following our disclosure, we learned that
the inconsistency in mobile GSB blacklisting was due to the
transition to a new mobile API designed to optimize data
usage, which ultimately did not function as intended. Because



blacklisting was not rectified after our full tests, we contacted
the entities anew. As a result, in mid-September 2018 Mozilla
patched Firefox (from version 63) such that all desktop
warnings were also shown on mobile. Google followed suit
days thereafter with a GSB API fix that covered mobile GSB
browsers retroactively; mobile Chrome and Safari now mirror
desktop listings, albeit with a shorter-lived duration to lower
bandwidth usage. Chrome, Safari, and Firefox thus again join
Opera as mobile browsers with effective blacklists, though
some popular mobile browsers still lack such protection [41].

Upon close inspection of the preliminary test results, we
found that Filter B sites were solely blacklisted due to their
suspicious URLs rather than our reports. During our full tests,
not a single site with Filter B was blacklisted in any browser,
interestingly despite the fact that crawlers did successfully
retrieve many of these sites. GSB addressed this vulnerability
in mid-September 2018, together with the aforementioned API
fix. Through a subsequent final redeployment of PhishFarm,
we verified that sites with Filter B were being blacklisted
following reports to GSB, the APWG, and PayPal. Other
entities— including ones we did not test— should ensure that
sites targeted at mobile users are being effectively detected.

2) Geolocation: Although our experiments only considered
two simple geolocation filters (US and non-US), our findings
are indicative of exploitable weaknesses in this area. Given the
overwhelming amount of crawler traffic from the US (79%,
per Table IX in Appendix III), Filter C should not have
been as effective as it proved to be. We hypothesize that
other geo-specific filters would have similarly low blacklisting
rates, in part due to the crawler characteristics discussed in
Section V-F1. Country- or region-specific filtering paired with
localized page content is not an unusual sight in real-world
PayPal phishing kits that we have analyzed.

3) JavaScript: It is trivial to implement JavaScript-based
cloaking such as Filter F. This technique proved to be effective
in slowing blacklisting by three of the five entities in our full
tests. Fortunately, SmartScreen bypasses this technique well,
and PayPal started doing so following our disclosure. The
broader ecosystem should better adapt to client-side cloaking,
in particular if its sophistication increases over time.

B. Anti-phishing Entities

We also offer a number of more general recommendations
for anti-phishing systems of tomorrow.

1) Continuous Testing: The mere failure of mobile black-
listing that we observed during our experiments is sufficient to
warrant the need for continuous testing and validation of black-
list performance. Periodic deployment of PhishFarm could
be used for such validation. In addition, continuous testing
could help ensure that future cloaking techniques— which may
grow in sophistication— can effectively be mitigated without
compromising existing defenses. As an added benefit, trends
in the relative performance of different entities and the overall
timeliness and coverage of blacklisting could be modeled.

2) Trusted Reporting Channels: The phishing reporting
channels we tested merely capture a suspected URL or a

malicious e-mail. While the latter is useful in identifying spam
origin, we believe a better solution would be the implementa-
tion of standardized trusted phishing reporting systems that
allow the submission of specific metadata (such as victim
geolocation or device). Trusted channels could allow detection
efforts to more precisely target high-probability threats while
minimizing abuse from deliberate false-negative submissions;
they could also simplify and expedite collaboration efforts
between anti-phishing entities and abused brands, which may
hold valuable intelligence about imminent threats.

3) Blacklist Timeliness: The gap between the detection
of a phishing website and its blacklisting across browsers
represents the prime window for phishers to successfully carry
out their attacks. At the level of an individual entity, cloaking
has a stronger effect on the occurrence rather than the time-
liness of blacklisting. However, if we look at the ecosystem
as a whole in Figure 3, cloaking clearly delays blacklisting
overall. Our test results show that blacklisting now typically
occurs in a matter of hours— a stark improvement over the
day- or week-long response time observed years ago [6],
[55]. However, given the tremendous increase in total phishing
attacks since then (on the order of well over 100 attacks per
hour in 2018 [2]), we believe that even today’s 40-minute
best-case blacklist response time is too slow to deter phishers
and effectively protect users. The gap needs to be narrowed,
especially by slower entities (i.e. those not directly in control
of blacklists). Future work should investigate the real-world
impact of delays in blacklisting on users and organizations
victimized by phishing attacks in order to accurately establish
an appropriate response threshold.

4) Volume: GSB, the APWG, and PayPal crawled nearly
all of the phishing sites we reported. In particular, GSB proved
to deliver a consistently agile response time despite the high
number of reports we submitted. Other entities fell short of
this level of performance. With increasing volumes of phishing
attacks, it is essential that all players in the ecosystem remain
robust and capable of delivering a consistent response.

5) Data Sharing: Data sharing has long been a concern
within the ecosystem [56]. We found that the two main
blacklist operators (GSB and SmartScreen) did not appear
to effectively share data with each other, as per Table VI.
However, clearinghouse entities (APWG and PhishTank) and
PayPal itself showed consistent protection across all browsers.
Unfortunately, the timeliness and overall coverage of clearing-
houses appear to be inferior to those of the blacklist operators
in their respective browsers. Closer cooperation could thus not
only speed up blacklisting, but also ensure that malicious sites
are blocked universally. Strengthening this argument, perhaps
a breakdown in communication between infrastructure used by
different entities accounted for those of our sites which were
successfully crawled but not ultimately blacklisted.

VII. RELATED WORK

To the best of our knowledge, our work is the first controlled
effort to measure the effects of cloaking in the context of



phishing. Several prior studies measured the general effective-
ness of anti-phishing blacklists and the behavior of phishing
kits; none of the prior work we identified considered cloaking,
which may have had a skewing effect on the datasets and
ecosystem findings previously reported. Cloaking itself has
previously been studied with respect to malicious search
engine results; Invernizzi et al. [7] proposed a system to detect
such cloaking with high accuracy. Oest et al. [8] later studied
the nature of server-side cloaking techniques within phishing
kits and proposed approaches for defeating each.

The work most similar to ours is NSS Labs’ [39] recent use
of a proprietary distributed testbed [57] to study the timeliness
of native phishing blacklisting in Chrome, Firefox, and Edge.
The main limitation of NSS Labs’ approach is the reliance on
feeds of known phishing attacks; any delay in the appearance
of a site in each source feed can affect the accuracy of
blacklisting time measurements. Furthermore, phishing sites
could be overlooked in the case of successful cloaking against
the feeds. We address these limitations by having full control
over the deployment and reporting time of phishing sites.

Sheng et al. [6] took an empirical approach to measure
the effectiveness of eight anti-phishing toolbars and browsers
powered by five anti-phishing blacklists. The authors found
that heuristics by Microsoft and Symantec proved effective
in offering zero-hour protection against a small fraction of
phishing attacks, and that full propagation across phishing
blacklists spanned several hours. This work also found that
false positive rates in blacklists are near-zero; we thus did
not pursue such tests in our experiments. While Sheng et al.’s
work was based on phishing sites only 30 minutes old, and
was thus better controlled than earlier blacklist tests [58], the
datasets studied were of limited size and heterogeneous in
terms of victim brands; the anti-phishing tools evaluated are
now dated. In addition, Sheng et al. checked blacklist status
with a granularity of one hour— longer than our 10 minutes.

Han et al. [25] analyzed the lifecycle of phishing sites
by monitoring cybercriminals’ behavior on a honeypot web
server. The authors timed the blacklisting of the uploaded
sites across Google Safe Browsing and PhishTank. Uniquely,
this work sheds light on the time between the creation and
deployment of real phishing sites. A key difference in our work
is our ability to customize and test different configurations of
phishing kits instead of waiting for one to be uploaded. For
instance, we could target specific brands or configure our own
cloaking techniques to directly observe the ecosystem’s re-
sponse. Our experiments suggest a significantly faster blacklist
response time by the ecosystem than what Han et al. found;
our test sample size was also nearly five times larger.

Virvilis et al. [41] carried out an evaluation of mobile
web browser phishing protection in 2014 and found that
major mobile web browsers at the time included no phishing
protection. Like that of Sheng et al., this evaluation was
empirical and based on a set of known phishing URLs. In
our work, we found that mobile Chrome, Safari, and Firefox
now natively offer blacklist protection, but that this protection
was not functioning as advertised during our tests.

The differences between today’s phishing trends and those
seen in prior work show that the ecosystem is evolving
quickly. This warrants regular testing of defenses and re-
evaluation of criminals’ circumvention techniques and attack
vectors; it also underscores the importance of scalable and
automatable solutions. Our testbed shares some similarities
with previous work [39], [6] but it is the only such testbed to
offer full automation without the need for intervention during
the execution of experiments, and the only one to actively
deploy sites and directly send reports to entities.

VIII. CONCLUSION

By launching and monitoring a large set of phishing sites,
we carried out the first controlled evaluation of how cloaking
techniques can hamper the timeliness and occurrence of phish-
ing blacklist warnings in modern web browsers. As a result
of our disclosure to anti-phishing entities, mobile blacklisting
is now more consistent, and some of the cloaking techniques
we tested are no longer as effective; others represent ongoing
vulnerabilities which could be addressed through tweaks to
existing detection systems. Such tweaks should also seek to
improve overall timeliness of blacklists to better counter the
modern onslaught of phishing attacks. Blacklist protection
should not be taken for granted; continuous testing— such
as that supported by our framework— is key to ensuring that
browsers are secured sufficiently, and as intended.

Cloaking carries a detrimental effect on the occurrence of
blacklisting due to the fundamentally-reactive nature of the
main detection approach currently used by blacklists; it thus
has the potential to cause continuous damage to the organiza-
tions and users targeted by phishers. Although no single entity
we tested was able to individually defeat all of our cloaking
techniques, collectively the requisite infrastructure is already
in place. In the short term, collaboration among existing
entities could help address their individual shortcomings. We
observed that proactive defenses (such as the URL heuristics
of SmartScreen) proved to deliver superior protection— but
only under the right circumstances. In the long term, the
ecosystem should move to more broadly implement general-
purpose proactive countermeasures to more reliably negate
cloaking. It is important for the ecosystem to be able to
effectively bypass cloaking because it is merely one way
in which phishing sites can be evasive. For instance, with
cloaking alongside redirection chains or bulletproof hosting,
phishing sites might otherwise avoid existing mitigations far
more successfully than what we have observed.

Phishing has proven to be a difficult problem to solve due
to attackers’ unyielding persistence, the cross-organizational
nature of infrastructure abused to facilitate phishing, and the
reality that technical controls cannot always compensate for
the human weakness exploited by social engineers. We believe
that continuous and close collaboration between all anti-abuse
entities, which can lead to a deep understanding of current
threats and development of intelligent defenses, is the crux of
optimizing controls and delivering the best possible long-term
protection for phishing victims.
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APPENDIX I: FULL TEST PER-ENTITY BLACKLISTING

Each entity we tested exhibited a characteristic blacklisting
behavior with respect to the different cloaking techniques; the
aggregate view of filter performance in Figure 3 masks some of
these characteristics. Figure 4 includes similar charts for each
individual entity as a supplement to Figure 3 and the entity
scores in Table VI. Each chart shows detailed blacklisting
performance over time, aggregated for all browsers, for each
filter type.

(a) GSB

(b) SmartScreen

(c) APWG

(d) PhishTank

(e) PayPal

Fig. 4: Blacklisting over time by filter (full tests).



APPENDIX II: PRELIMINARY TEST DATA

Table VIII includes detailed performance scores for all
entities in the preliminary tests. These scores are based on the
formulas in Section V-B and are the basis of our comparative
discussion in Section V-C. We visualize the preliminary test
performance of only the subsequently re-tested entities (GSB,
SmartScreen, AWPG, PhishTank, and PayPal) in Figure 5a.

Figure 5b illustrates the increased likelihood of URLs with
a deceptive domain (Type IV [8], [49]) to be blacklisted during
the preliminary tests. As previously discussed, this increase is
linked to heuristics used by SmartScreen browsers; the positive
effect that this had on IE and Edge blacklisting can be seen in
the browser performance breakdown in Figure 5c. The latter
two charts are based on data from all 10 preliminary tests.

TABLE VIII: Aggregate entity blacklisting performance scores
in the preliminary tests.

GSB Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.988 0 0 0.846 0 0.493 0.466
IE 0 0.142 0 0 0 0.148 0.049
Edge 0.950 0.130 0 0.709 0 0.703 0.551

Sbf

Opera 0.138 0 0 0.236 0 0 0.046
PBf 1.000 1.000 0 0.857 0 0.833 0.421 S

TBf 38 10 N/A 43 N/A 151 0.900 C

SmartScreen Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0 0 0 0 0 0
IE 0 0.142 0.284 0.142 0.135 0.166 0.100
Edge 0.956 0 0 0 0.952 0.703 0.870

Sbf

Opera 0 0 0 0 0 0 0
PBf 1.000 0.143 0.286 0.143 1.000 0.833 0.045 S

TBf 10 10 14 18 162 7 1 C

APWG Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.648 0 0 0.141 0 0 0.158
IE 0.255 0.432 0.306 0.306 0.524 0.178 0.319
Edge 0.958 0.142 0.137 0 0.821 0.632 0.804

Sbf

Opera 0.345 0 0 0 0 0 0.115
PBf 1.000 1.000 1.000 0.857 1.000 0.333 0.198 S

TBf 73 286 199 154 276 188 1 C

PhishTank Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.971 0.141 0.261 0 0.399 0.303 0.387
IE 0.314 0 0 0 0.286 0.167 0.255
Edge 0.771 0 0 0.124 0.522 0.295 0.529

Sbf

Opera 0.112 0.123 0 0 0 0 0.037
PBf 1.000 0.286 0.286 0.125 0.714 0.333 0.372 S

TBf 95 309 344 3784 162 363 0.975 C

PayPal Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.637 0 0.276 0 0.408 0 0.264
IE 0.345 0.517 0.448 0.306 0.525 0 0.290
Edge 0.213 0 0 0.173 0 0.145 0.119

Sbf

Opera 0.102 0 0.253 0 0 0 0.034
PBf 1.000 1.000 1.000 1.000 1.000 0.167 0.255 S

TBf 121 181 128 179 154 3694 0.925 C

ESET Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.297 0 0 0 0 0 0.059
IE 0 0 0 0 0 0 0
Edge 0.256 0 0 0 0 0 0.085

Sbf

Opera 0.137 0 0 0 0 0 0.046
PBf 0.333 0 0 0 0 0 0.055 S

TBf 444 N/A N/A N/A N/A N/A 1 C

WebSense Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0 0 0 0 0 0
IE 0 0 0.142 0 0 0.331 0.110
Edge 0 0 0.128 0 0 0.299 0.100

Sbf

Opera 0 0 0 0 0 0 0
PBf 0 0 0.143 0 0 0.286 0.014 S

TBf 444 N/A 4 N/A N/A 6 0.275 C

Netcraft Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0.135 0 0.538 0 0 0.108
IE 0.166 0 0.142 0 0.134 0 0.100
Edge 0.389 0 0.129 0 0 0 0.130

Sbf

Opera 0.302 0.260 0.130 0 0.130 0 0.144
PBf 0.667 0.429 0.182 0.571 0.182 0 0.109 S

TBf 531 334 206 241 318 N/A 0.975 C

US CERT Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0 0.139 0 0 0 0.028
IE 0 0.127 0.142 0 0.134 0 0.045
Edge 0 0.127 0.127 0 0.127 0 0.042

Sbf

Opera 0 0 0 0 0 0 0
PBf 0 0.143 0.286 0 0.143 0 0.029 S

TBf N/A 28 70 N/A 248 N/A 0.200 C

McAfee Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0 0 0 0 0.160 0.032
IE 0.167 0.127 0.143 0.143 0 0 0.056
Edge 0.939 0 0 0 0.955 0.118 0.671

Sbf

Opera 0 0 0 0 0 0 0
PBf 1 0.143 0.143 0.143 1 0.167 0.059 S

TBf 134 466 3702 3702 180 172 1 C

(a) By filter (re-tested entities only)

(b) By URL type (all entities)

(c) By browser (all entities)

Fig. 5: Blacklisting over time (preliminary tests).



APPENDIX III: CRAWLER TRAFFIC ANALYSIS

Our 2,380 phishing sites logged a total of 2,048,606 HTTP
requests originating from 100,959 distinct IP addresses. A sub-
stantial proportion of requests was characterized by crawlers
scanning for phishing kit archives (i.e. zip files) or credential
dump files; such requests resulted in 404 “not found” errors. It
is beneficial for the security community to be able to identify
compromised user information and study phishing kits [8],
[10], but such crawling is noisy. By monitoring traffic to
their phishing sites, cybercriminals could become aware of the
ecosystem’s knowledge of their tools, and adapt accordingly.

Figure 6 aggregates the web traffic to all phishing sites
from the full tests over the course of a 2-week period rel-
ative to initial deployment (along a logarithmic scale). Not
unexpectedly, we observed the largest amount of traffic in the
hours immediately after reporting each phishing site. Smaller
spikes occurred several hours or days thereafter as additional
infrastructure started accessing the sites. We automatically
disabled each site at the end of its 72-hour deployment;
crawlers would thus start seeing 404 errors thereafter. We
observed a spike in traffic at this point with characteristics
similar to the initial crawler traffic, followed by an immediate
sharp decline (presumably once the offline state of each site
was verified). Over the following seven days, we logged a
consistent yet slowly-declining level of traffic. It is clear that
an effort is being made to ensure that offline phishing content
does not make a return. After about 10 days, we saw a second
sharp decline, after which the traffic reached insignificant
levels. We did not study blacklist warning persistence across
browsers; this could be an interesting area to explore in the
future.

1) Geographical Origin: Using the GeoLite2 IP database,
we found that traffic to our phishing sites originated from
113 different countries across the majority of North America,
Europe, and Asia, and some of Africa, as shown in Table IX.
79.02% of all unique IP addresses were based in the US; this
accounted for a slightly lower 64.73% of all traffic but still
constituted an overwhelming majority overall.

2) Entity Crawler Overlap: We provide a summary of IP
address overlap between entities in Table X. The data is in-
dicative of collaboration between certain entities, as discussed
in Section VI-B5. A per-entity analysis of long-term crawler
traffic is outside the scope of this work.

Fig. 6: Traffic to our phishing sites over time (full tests).

TABLE IX: Geographical distribution of requests to our sites.

Country Total Traffic Unique IPs
United States 64.73% 79.02%
United Kingdom 6.66% 2.42%
Germany 4.72% 1.30%
Brazil 1.99% 2.04%
Italy 1.80% 0.34%
Japan 1.73% 0.43%
Netherlands 1.73% 0.76%
India 1.54% 0.76%
Canada 1.36% 1.28%
France 1.21% 0.68%
Belgium 0.85% 0.13%
Singapore 0.65% 0.30%
Ireland 0.65% 0.66%
Norway 0.65% 0.18%
Australia 0.63% 0.34%
Korea 0.50% 0.17%
Denmark 0.50% 0.12%
Estonia 0.48% 0.07%
Austria 0.45% 0.15%
Russia 0.42% 2.23%
Unknown 3.99% 1.96%
93 Others 2.75% 4.65%

TABLE X: Crawler IP overlap between entities.

IP Overlap
Entity Unique

IPs GSB MS APWG Phish-
Tank PayPal

GSB 1,788 7.94% 31.20% 18.40% 53.52%
MS 475 29.89% 29.89% 23.16% 38.11%
APWG 6,165 11.08% 2.30% 11.13% 47.96%
PhishTank 2,409 13.66% 4.57% 28.48% 47.11%
PayPal 17,708 5.40% 1.02% 16.70% 6.41%

TABLE XI: Web traffic during and after site deployment.

Total HTTP Requests Unique IP Addresses
Valid URL Invalid URL Valid URL Invalid URL

Sites Live 271,943 452,049 6,528 11,869
Day 3-14 262,141 7,230Prelim.
Total 986,133 20,874
Sites Live 355,093 545,704 22,929 54,392
Day 3-14 161,676 21,991Full
Total 1,062,473 80,085


