
it 1/15

E-Mail Header Injection Vulnerabilities
Sai Prashanth Chandramouli, Ziming Zhao, Adam Doupé, Gail-Joon Ahn

Abstract:
E-mail Header Injection vulnerability is a class of vulnerability that can occur in web
applications that use user input to construct e-mail messages. E-mail Header Injection is
possible when the mailing script fails to check for the presence of e-mail headers in user
input (either form fields or URL parameters). The vulnerability exists in the reference
implementation of the built-in mail functionality in popular languages such as PHP, Java,
Python, and Ruby. With the proper injection string, this vulnerability can be exploited to
inject additional headers, modify existing headers, and alter the content of the e-mail.

ACM CCS: Security and privacy → Software and application security → Web
application security

Keywords: E-mail Header Injection, Software Security

1 Introduction

The World Wide Web has single-handedly brought
about a change in the way we use computers. The ubi-
quitous nature of the web has made it possible for anyo-
ne to access information and services anywhere and on
multiple devices such as phones, laptops, personal digi-
tal assistants, TVs, and cars. This access has ushered in
an era of web applications which depend on user input.
While this rapid pace of development has improved the
speed of dissemination of information, it does come at
a cost.

Many common and well-known web application vulne-
rabilities, such as SQL Injection and Cross-Site Scrip-
ting [15], are command injection vulnerabilities [23],
where malicious user input is used to alter the struc-
ture of a command (a SQL query in the case of SQL
Injection and JavaScript code in the case of Cross-Site
Scripting).

E-mail Header Injection vulnerabilities are a lesser-
known command injection vulnerability. E-mail Header
Injection can be considered as the e-mail equivalent of
HTTP Header Injection [16]. We found that this vulne-
rability exists in the implementation of the built-in mail

functionality in popular languages such as PHP, Java,
Python, and Ruby. The format of e-mail messages is de-
fined by the Simple Mail Transfer Protocol (SMTP) [19].
Each e-mail message is represented by a series of hea-
ders separated by newlines, followed by the body content
(separated from the headers by two newlines). Some of
these headers are mandatory (From, To, Date), but the

headers can also include other information such as the
Subject, CC, BCC, etc.

With the proper injection string, E-mail Header Injec-
tion vulnerabilities can be exploited by an attacker to
inject additional headers, modify existing headers, or
alter the contents of the e-mail—while still appearing
to be from a legitimate source. E-mail Header Injection
exploits allow an attacker to perform e-mail spoofing, re-
sulting in phishing attacks that are sent from the actual
e-mail server.

While some command injection vulnerabilities have re-
ceived extensive attention from the research communi-
ty, E-mail Header Injection vulnerabilities have received
little focus. Therefore, we describe the causes of E-mail
Header Injection vulnerabilities, the web application fra-
meworks that are vulnerable by default, and the impli-
cations of E-mail Header Injection vulnerabilities.

2 Vulnerability Classification

E-mail Header Injection belongs to a broad class of
vulnerabilities known as command injection vulnerabi-
lities [4]. In command injection vulnerabilities, the at-
tacker’s input is able to alter the commands executed.

However, unlike its more popular command injection
siblings, SQL injection (where attacker input is able to
alter SQL commands) [2, 6, 20], Cross-Site Scripting
(where attacker input is able to alter the HTML con-
tent of a web page) [9, 11], and HTTP Header Injection
(where attacker input is able to alter the HTTP hea-
ders of a web application [10], relatively little academic

it – Information Technology 57 (2015) 1 © de Gruyter Oldenbourg 1

1 $from = $_REQUEST['email '];
2 $subject = 'Hello XYZ';
3 $message = 'We need you to reset your

password ';
4 $to = 'xyz@example.com';
5

6 // example attack string to be
7 // injected as the value for
8 // $_REQUEST['email '] =>
9 // 'abc@example.com\nCC:spc@example.com'

10 $retValue = mail($to , $subject , $message ,
"From: $from");

11 // E-Mail gets sent to both
12 // xyz@example.com AND spc@example.com

Listing 1.1: PHP program E-mail Header Injection vulnerability.

research is available on E-mail Header Injection vulne-
rabilities.

As with other vulnerabilities in this class, E-mail Header
Injection is caused due to improper or nonexistent sa-
nitization of user input. If the program that constructs
e-mails from user input fails to check for the presence of
e-mail headers in the user input, a malicious user—using
a well-crafted payload—can control the headers set for
this particular e-mail.

3 History of E-mail Header Injection

We found the first E-mail Header Injection description
in a late 2004 article on phpsecure.info [26] accredited
to user tobozo@phpsecure.info describing how an E-mail
Header Injection vulnerability existed in the implemen-
tation of the mail() function in PHP and how it can be
exploited. More recently, a blog post by Damon Koh-
ler [12] and an accompanying wiki article [21] describe
the attack vector and outline few defense measures for
E-mail Header Injection vulnerabilities.

An example of vulnerable code written in PHP is shown
in Listing 1.1. This code takes in user input from the
PHP superglobal $ REQUEST['email'], and stores it in
the variable $from, which is later passed to the mail()

function to construct and send the e-mail.

When this code is given the malicious input
abc@example.com\nCC:spc@example.com as the value of
the $ REQUEST['email'], it generates the equivalent
SMTP headers shown in Listing 1.2. It can be seen that
the CC (carbon copy) header that the attacker injected
appears as part of the resulting SMTP message. Thus,
the SMTP server interprets this CC header as code rat-
her than the intended data. This will cause an e-mail to
be sent to the e-mail address specified as part of the CC

as well.

4 Languages Affected

We investigated the e-mailing functionality of popular
web application programming languages to see if they

1 Received: from mail.ourdomain.com
([62.121.130.29])

2 by xyz.com (Postfix) with ESMTP id 5
A08E52C0154

3 for <abc@example.com>; Sun , 20 Mar 2016
13:56:58 -0700 (MST)

4 From: abc@example.com
5 CC: spc@example.com
6 To: xyz@example.com
7 Subject: Hello XYZ
8 Date: Sun , 20 Mar 2016 13:56:58 -0700 (MST

)
9

10 We need you to reset your password

Listing 1.2: SMTP headers generated by a PHP mailing script.

contain E-mail Header Injection vulnerabilities. This
section is not intended as a complete reference of vulne-
rable functions and methods, but rather as a guide that
specifies which parts of the language are vulnerable.

PHP was one of the first languages found to be vulne-
rable to E-mail Header Injection in its implementation
of the mail() function at the time of release of PHP 4.0.
According to w3techs [27], PHP is used by 81.9% of all
the websites.

After 13 iterations of PHP since the 4.0 release (the
current version is 7.1), the mail() function is yet to be
fixed after 15 years. However, it is specified in the PHP
documentation [17] that the mail() function does not
protect against E-mail Header Injection. A working code
sample of the vulnerability, written in PHP 5.6 (latest
well-supported version), is shown in Listing 1.1.

Python A bug was filed about an E-mail Header In-
jection vulnerability in Python’s implementation of the
email.header library and the header parsing functions
allowing newlines in early 2009, which was followed by
a partial patch in early 2011.

Unfortunately, the bug fix was only for the
email.header package, and thus exists in other fre-
quently used packages such as email.parser, where
both the classic Parser() and the newer FeedParser()
contain E-mail Header Injection vulnerabilities even in
the latest versions: 2.7.11 and 3.5. The bug fix was al-
so not backported to older versions of Python. There is
no mention of the vulnerability in the Python documen-
tation for either library. Contrary to PHP’s behavior
of overwriting existing headers, Python only recognizes
the first occurrence of a header, and ignores duplicate
headers. A working code sample of the vulnerability,
written in Python 2.7.11, is shown in Listing 1.3.

Java has a bug report about E-mail Header Injection
filed against its JavaMail API. A detailed write-up by
Alexandre Herzog [7] contains a proof-of-concept pro-
gram that exploits the API to inject headers.

Ruby From our testing, Ruby’s built-in Net::SMTP li-
brary also has an E-mail Header Injection library. This
is not documented on the library’s homepage.

2

1 from email.parser import Parser
2 import cgi
3 form = cgi.FieldStorage ()
4 to = form["email"] # input () exhibits
5 # the same behavior
6 msg = """To: """ + to + """\n
7 From: <user@example.com >\n
8 Subject: Test message\n\n
9 Body would go here\n"""

10

11 f = FeedParser () # Parser.parsestr ()
12 # also contains the same vulnerability
13 f.feed(msg)
14 headers = FeedParser.close(f)
15

16 # attack string =>
17 # 'abc@example.com\nBCC:spc@example.com'
18 # for form["email "]
19

20 # to:abc@example.com AND bcc:spc@example.
com

21 # are added to the headers
22 print 'To: %s' % headers['to']
23 print 'BCC: %s' % headers['bcc']

Listing 1.3: Python program with e-mail header injection
vulnerability.

5 Impact of E-mail Header Injection

The impact of an E-mail Header Injection vulnerability
can be far-reaching. According to w3tech, PHP, Java,
Python, and Ruby (combined) account for over 85% 1

of the server-side programming languages in websites
measured, and the default implementation of the e-mail
functionality of these languages is vulnerable to E-mail
Header Injection.

The impact of exploiting an E-mail Header Injection vul-
nerability depends on where in the SMTP message the
attacker can control. By definition, the injection must
occur in the header section of the SMTP message and
not in the body. The attacker cannot alter headers that
appear before the injection point, but the attacker has
complete control over all the remaining SMTP message,
including the message body. In this way, the attacker
can completely control who receives the message (and
can include multiple CC and BCC recipients), the com-
plete body of the message, and possibly the subject of
the message (if the Subject SMTP header is after the
injection point).

The main vector for exploiting E-mail Header Injection
vulnerabilities follows most command injection vulne-
rability exploitation: first inject the attacker’s desired
commands, then comment out the rest of the message.
In E-mail Header Injection vulnerabilities, the attacker
first includes all SMTP headers desired. These will typi-
cally be the Subject header to control the subject of the
e-mail2, CC or BCC headers to control the recipients of

1 A website may use more than one server-side program-
ming language.
2 The SMTP protocol specifies that there should only be
one Subject header, so the attacker may not be able to alter

1 Received: from mail.ourdomain.com
([62.121.130.29])

2 by xyz.com (Postfix) with ESMTP id 5
A08E52C0154

3 for <abc@example.com>; Sun , 20 Mar 2016
13:56:58 -0700 (MST)

4 From: abc@example.com
5 CC: 1@example.com , 2@example.com , 3

@example.com
6 Subject: My Subject
7 Content -Type: multipart/mixed; boundary=

foobar;
8 --foobar
9 Content -Type: text/html

10

11 This is the attacker 's body
12 --foobar
13 To: xyz@example.com
14 Subject: Hello XYZ
15 Date: Sun , 20 Mar 2016 13:56:58 -0700 (MST

)
16

17 We need you to reset your password

Listing 1.4: Exploiting E-mail Header Injection vulnerability to
control recipients, subject, and body.

the e-mail. The Content-type header is used to specify
that the SMTP message is a multi-part email and that
the sections are separated by an attacker-specified boun-
dary. The boundary delineates the parts of the message
so that the attacker’s body is the only valid part of the
message, and the attacker can choose a random value
for the boundary that is not present in the developer-
controlled part of the SMTP message.

Thus, the attacker can completely control the e-
mail. For instance, injecting the following attack pay-
load: abc@example.com\nCC:1@example.com, 2@example

.com, 3@example.com\nSubject: My Subject\nContent

-Type:multipart/mixed; boundary=foobar;\n--foobar\

nContent-Type: text/html\n\nThis is the attacker's
body\n--foobar into the PHP program described in

Listing 1.1 results in the SMTP message shown in Li-
sting 1.4.

This payload is quite lengthy, so if there are limits on the
size of the vulnerable variable, a simpler technique can
be to use an HTML comment, if there is no HTML com-
ments in the developer-controlled part of the message:
abc@example.com\nCC:1@example.com, 2@example.com,

3@example.com\nSubject: My Subject\nContent-Type:

text/html\n\nThis is the attacker's body<!--.

Using these techniques, an E-mail Header Injection vul-
nerability can be exploited to perform the following:

Phishing and Spoofing Attacks Phishing [8] (a va-
riation of spoofing [5]) refers to an attack where the re-
cipient of an e-mail is made to believe that the e-mail is
legitimate when it was really created by a malicious par-
ty. The e-mail usually redirects the victim to a malicious

the subject if the header is already defined. This behavior
would be MUA-dependent.

3

website, which then steals their credentials or infects
their computer with malware (via a drive-by-download).

By controlling the content of the e-mail as well as in-
jecting arbitrary headers into an e-mail sent by a web-
site, an attacker can leverage an E-mail Header Injecti-
on vulnerability to send phishing emails. The generated
e-mail is sent from the website’s mail server, therefore
users (and anti-spam defenses) are more likely to trust
an e-mail that is sent from the proper mail server.

Spam Networks Spam networks can use E-mail Hea-
der Injection vulnerabilities to send a large amount of
e-mail from servers that are trusted. By adding additio-
nal CC or BCC headers to the generated e-mail, attackers
can easily choose multiple recipients of the spam email.

Due to the e-mail being from trusted domains, recipi-
ent e-mail clients and anti-spam systems might not flag
them as spam. If they do flag them as spam, then that
can lead to the website being blacklisted as a spam ge-
nerator (which would cause a Denial of Service on the
vulnerable web application). Unlike traditional botnets
sending spam, which typically do so through residenti-
al ISPs, E-mail Header Injection vulnerabilities exist on
web applications on business networks, which have mo-
re bandwidth than residential networks. Thus, we belie-
ve that attackers could exploit E-mail Header Injection
vulnerabilities to generate substantial amounts of spam.

Information Extraction E-mails can contain sensiti-
ve data that is meant to be accessed only by the user.
Due to an E-mail Header Injection vulnerability, an at-
tacker can add a BCC header, and the e-mail server will
send a copy of the private e-mail to the attacker, there-
by extracting important information. User privacy can
thus be compromised, and loss of private information
can lead to other attacks.

Denial of Service Denial of service attacks (DoS),
can be caused by exploiting an E-mail Header Injecti-
on vulnerability. The ability to send many e-mails by
injecting one header field can result in overloading the
mail server and cause crashes or instability.

E-mail Header Injection vulnerabilities are particularly
impactful because they exploit the trust that mail clients
have in the vulnerable mail server. Attackers can take
advantage of this trust to facilitate their malicious beha-
viors. In addition, active exploitation of E-mail Header
Injection vulnerabilities degrades this trust, which can
be difficult to recover.

6 Related Work

Our work on studying E-mail Header Injection vulnera-
bilities is related to other injection based attacks, such
as SQL Injection [2, 6, 20], Cross-Site Scripting [9, 11],
HTTP Header Injection [10], and the related Simple
Mail Transfer Protocol (SMTP) Injection [25].

The attack described by Terada [25] is one that attacks
the underlying SMTP mail servers by injecting SMTP
commands (which are closely related to E-Mail Headers
and usually have a one-to-one mapping, e.g., To e-mail
header has a corresponding To SMTP header) to ex-
ploit the SMTP server’s pipelining mechanism. Terada
also describes proof-of-concept attacks against certain
mailing libraries such as Ruby Mail and JavaMail. This
attack, although trying to achieve a similar result, is di-
stinctly different from ours.

The first documented article on E-mail Header Injec-
tion vulnerabilities is a late 2004 article on phpsecu-
re.info [26] accredited to user tobozo@phpsecure.info de-
scribing how this vulnerability existed in the reference
implementation of the mail function in PHP, and how
it can be exploited. Following this, we found other blog
posts [3, 12, 13, 14, 18], each describing how to exploit
the vulnerability by using newlines to camouflage hea-
ders inside user input. However, none of these articles
have categorized and described both the cause of the
vulnerability as well as the impact.

Another blog post written by user Voxel@Night on
Vexatious Tendencies [24], recounts an actual exploit
against a WordPress plugin, Contact Form, with a proof
of concept3. It also showcases the vulnerable code in the
plugin that causes this vulnerability to be present. This
article targets one plugin. Neither does it inform the
creators of the plugin to fix the discovered vulnerabi-
lity. E-mail Header Injection was described briefly by
Stuttard and Pinto in their book, “The Web Application
Hacker’s Handbook: Discovering and Exploiting Security
Flaws” [22]. The book, however, does not go into detail
on the attack.

7 Conclusion

In this chapter, we have discussed a vulnerability
class that received little attention from the research
community—E-mail Header Injection vulnerabilities.
After discussing the causes and implications of these vul-
nerabilities, we hope that this work will serve to motive
the research community to study and address this vul-
nerability class. Because E-mail Header Injection vul-
nerabilities can be used to facility spam and phishing
attacks, these vulnerabilities can potentially affect all
Internet users.

3 Note that this plugin is used actively on 300,000 websites
(according to [1]), but is yet to be fixed.

4

it 1/15

Literaturverzeichnis

[1] BestWebSoft. Contact Form by BestWebSoft Word-
Press Plugins. https://wordpress.org/plugins/

contact-form-plugin/, 2016.

[2] S. W. Boyd and A. D. Keromytis. Sqlrand: Pre-
venting sql injection attacks. In Applied Cryptogra-
phy and Network Security, pages 292–302. Springer,
2004.

[3] B. Calin. Email Header Injection
Web Vulnerability - Acunetix. https:

//www.acunetix.com/blog/articles/

email-header-injection-web-vulnerability-detection/,
2013.

[4] Common Weakness Enumeration. CWE-77: Impro-
per Neutralization of Special Elements used in a
Command (’Command Injection’). https://cwe.

mitre.org/data/definitions/77.html.

[5] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wal-
lach. Web spoofing: An internet con game. Software
World, 28(2):6–8, 1997.

[6] W. G. Halfond, J. Viegas, and A. Orso. A classifi-
cation of sql-injection attacks and countermeasures.
In Proceedings of the IEEE International Symposi-
um on Secure Software Engineering, volume 1, pa-
ges 13–15. IEEE, 2006.

[7] A. Herzog. Full Disclosure: JavaMail SMTP Header
Injection via method setSubject [CSNC-2014-001],
2014.

[8] M. Jakobsson and S. Myers. Phishing and counter-
measures: understanding the increasing problem of
electronic identity theft. John Wiley & Sons, 2006.

[9] T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced embedded
policies. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages
601–610, New York, NY, USA, 2007. ACM.

[10] M. Johns and J. Winter. Requestrodeo: Client side
protection against session riding. In Proceedings of
the OWASP Europe 2006 Conference, 2006.

[11] A. Klein. [DOM Based Cross Site Scripting or XSS
of the Third Kind] Web Security Articles - Web Ap-
plication Security Consortium, 2005.

[12] D. Kohler. damonkohler: Email Injecti-
on. http://www.damonkohler.com/2008/12/

email-injection.html, 2008.

[13] A. Mohamed. PHP Email Injection Exam-
ple - InfoSec Resources. http://resources.

infosecinstitute.com/email-injection/, 2013.

[14] J. Nicol. Securing PHP Contact Forms.
http://jonathannicol.com/blog/2006/12/

09/securing-php-contact-forms/, 2006.

[15] OWASP. OWASP Top Ten Project. https://www.
owasp.org/index.php/OWASP_Top_10, 2013.

[16] OWASP. OWASP - HTTP header injecti-
on. https://www.owasp.org/index.php/HTTP_

Response_Splitting, 2016.

[17] PHP-Manual. PHP mail - Send mail. http://php.
net/manual/en/function.mail.php, 2016.

[18] A. Pope. Prevent Contact Form Spam Email Header
Injection — Storm Consultancy Web Design Bath,
2008.

[19] P. W. Resnick. Internet Message Format - RFC
5322. 2008.

[20] A. Sadeghian, M. Zamani, and A. A. Manaf. A
taxonomy of sql injection detection and prevention
techniques. In Informatics and Creative Multimedia
(ICICM), 2013 International Conference on, pages
53–56. IEEE, 2013.

[21] Email Injection - Secure PHP Wiki. http://

securephpwiki.com/index.php/EmailInjection,
2010.

[22] D. Stuttard and M. Pinto. The Web Application
Hacker’s Handbook: Finding and Exploiting Security
Flaws. John Wiley & Sons, 2011.

[23] Z. Su and G. Wassermann. The essence of command
injection attacks in web applications. In ACM SIG-
PLAN Notices, volume 41, pages 372–382. ACM,
2006.

[24] V. Tendencies. WordPress Plugin Vulnera-
bility Dump Part 2 — Vexatious Tenden-
cies. https://vexatioustendencies.com/

wordpress-plugin-vulnerability-dump-part-2/,
2014.

[25] T. Terada. SMTP Injection via recipient email ad-
dresses. MBSD White Paper, December 2015.

[26] Tobozo. Mail headers injections with PHP.
http://www.phpsecure.info/v2/article/

MailHeadersInject.en.php, 2004.

[27] W3techs. Usage Statistics and Market Share of PHP
for Websites, February 2016. http://w3techs.

com/technologies/details/pl-php/all/all,
2016.

Sai Prashanth Chandramouli has a
Masters in Computer Science from Ari-
zona State University, with a thesis on
E-mail Header Injection vulnerability,
which he developed under the guidance
of Dr. Adam Doupé. His interests inclu-
de web security and computational crea-
tivity.

Address: Arizona State University,
E-Mail:saipc@asu.edu

it – Information Technology 57 (2015) 1 © de Gruyter Oldenbourg 5

https://wordpress.org/plugins/contact-form-plugin/
https://wordpress.org/plugins/contact-form-plugin/
https://www.acunetix.com/blog/articles/email-header-injection-web-vulnerability-detection/
https://www.acunetix.com/blog/articles/email-header-injection-web-vulnerability-detection/
https://www.acunetix.com/blog/articles/email-header-injection-web-vulnerability-detection/
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/77.html
http://www.damonkohler.com/2008/12/email-injection.html
http://www.damonkohler.com/2008/12/email-injection.html
http://resources.infosecinstitute.com/email-injection/
http://resources.infosecinstitute.com/email-injection/
http://jonathannicol.com/blog/2006/12/09/securing-php-contact-forms/
http://jonathannicol.com/blog/2006/12/09/securing-php-contact-forms/
https://www.owasp.org/index.php/OWASP_Top_10
https://www.owasp.org/index.php/OWASP_Top_10
https://www.owasp.org/index.php/HTTP_Response_Splitting
https://www.owasp.org/index.php/HTTP_Response_Splitting
http://php.net/manual/en/function.mail.php
http://php.net/manual/en/function.mail.php
http://securephpwiki.com/index.php/Email Injection
http://securephpwiki.com/index.php/Email Injection
https://vexatioustendencies.com/wordpress-plugin-vulnerability-dump-part-2/
https://vexatioustendencies.com/wordpress-plugin-vulnerability-dump-part-2/
http://www.phpsecure.info/v2/article/MailHeadersInject.en.php
http://www.phpsecure.info/v2/article/MailHeadersInject.en.php
http://w3techs.com/technologies/details/pl-php/all/all
http://w3techs.com/technologies/details/pl-php/all/all

Dr. Ziming Zhao is an assistant rese-
arch professor in the School of Compu-
ting, Informatics, and Decision Systems
Engineering, Ira A. Fulton Schools of
Engineering, Arizona State University.
His research interests include system
and network security and cybercrime
analysis. Dr. Zhao received a Ph.D in
Computer Science from Arizona State
University (ASU). He is a member of IE-
EE and the ACM.

Address: Arizona State University,
E-Mail:zzhao30@asu.edu

Dr. Adam Doupé is an Assistant Pro-
fessor in the School of Computing, In-
formatics, and Decision Systems Engi-
neering at Arizona State University. His
research interests include vulnerability
analysis, web security, mobile security,
and hacking competitions, which has be-
en supported by the National Science
Foundation.

Address: Arizona State University,
E-Mail:zzhao30@asu.edu

Dr. Gail-Joon Ahn is currently a pro-
fessor of computer science and enginee-
ring in the School of Computing, Infor-
matics, and Decision Systems Enginee-
ring and the director of Center for Cy-
bersecurity and Digital Forensics, Ari-
zona State University. His research in-
terests include information and systems
security, vulnerability and risk manage-
ment, access control, and security archi-
tecture for distributed systems, which
has been supported by National Science
Foundation, Department of Defense, Of-
fice of Naval Research, Army Research

Office, Department of Justice, and private sectors including All-
state, Bank of America, Hewlett Packard, Microsoft, Robert Wood
Johnson Foundation, Cisco, GoDaddy, and Intel. He received the
Department of Energy Early Career Investigator Award and the
Educator of the Year Award given by the Federal Information Sy-
stems Security Educators Association in 2005.

Address: Arizona State University, E-Mail:gahn@asu.edu

6

	1
	1 Introduction
	2 Vulnerability Classification
	3 History of E-mail Header Injection
	4 Languages Affected
	5 Impact of E-mail Header Injection
	6 Related Work
	7 Conclusion

