
EARs in the Wild: Large-Scale Analysis of
Execution After Redirect Vulnerabilities

Pierre Payet
Ecole Superieure d’Informatique Electronique

Automatique, Paris
payet@et.esiea.fr

Adam Doupé, Christopher Kruegel,
Giovanni Vigna

University of California, Santa Barbara
{adoupe, chris, vigna}@cs.ucsb.edu

ABSTRACT

Execution After Redirect vulnerabilities—logic flaws in web appli-
cations where unintended code is executed after a redirect—have
received little attention from the research community. In fact, we
found a research paper that incorrectly modeled the redirect seman-
tics, causing their static analysis to miss EAR vulnerabilities.

To understand the breadth and scope of EARs in the real world,
we performed a large-scale analysis to determine the prevalence of
EARs on the Internet. We crawled 8,097,283 URLs from 255,957
domains. We employ a black-box approach that finds EARs which
manifest themselves by information leakage in the HTTP redirect
response. For this type of EAR, we developed a classification sys-
tem that discovered 2,173 security-critical EARs among 416 do-
mains. This result shows that EARs are a serious and prevalent
problem on the Internet today and deserve future research atten-
tion.

1. INTRODUCTION
The Internet and the Web have become an integral part in the

lives of billions of people who routinely use online services to store
and manage sensitive information. Unfortunately, the popularity of
online services has attracted cybercriminals. An important class of
attacks targets web applications: For example, in 2010, malicious
activity targeting businesses’ web applications increased 93% com-
pared to the previous year [13]. Ideally, web applications would be
impervious to leaks, attacks, or any other threat. However, due
to the complexity of modern web architectures and web technolo-
gies, this goal is elusive. Even vulnerabilities such as SQL injec-
tion or cross-site scripting (XSS), which are well-known, are still
frequently exploited and make up a significant portion of the vul-
nerabilities discovered every year [6, 27].

In this paper, we focus on a class of security flaws that is not as
well-known as XSS and SQL injection vulnerabilities, but equally
serious from a security point of view: Execution After Redirect [10].

Execution After Redirect, or EAR, is a type of security flaw that
occurs when unintended code is executed after a call to a redirect
function in a web application. The web application developer in-
tends for the control flow of the web application to halt at the call to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

the redirect function, but, depending on the web application frame-
work, the control flow does not halt. This misunderstanding of the
web application framework semantics causes an EAR vulnerability
because unintended code is executed and the web application sends
an HTTP redirect response. As a result of the EAR, the unintended
code execution can cause information leakage through the HTTP
redirect response or can cause unauthorized database modification.

Previous research on EARs focused on detecting EARs in Ruby
on Rails web applications via static analysis of the source code [10].
This approach detects unauthorized database modifications, but is
limited to Ruby on Rails applications and requires access to the
application code. This paper attempts to find information leakage
EARs by looking at the HTTP redirect response.

An HTTP redirect response is used by a web application in the
following way. When a user attempts to access a resource on a web
application, the server can send an HTTP redirect response, indi-
cating to the user to look elsewhere for the requested resource. De-
pending on the HTTP status code sent by the server1, the browser
will make a new request to the redirect location [12].

To assess the prevalence of information leakage EARs on the
web at large, we performed a large-scale crawl of the web. Dur-
ing this crawl, we are looking for evidence of an information leak-
age EAR. Because information is leaked through the content of the
HTTP redirect response, we look at the HTTP redirect response as
external evidence of an information leakage EAR. From our crawl,
we developed a classification system that classifies content of the
HTTP redirect response, or simply redirect content, as benign or
security critical. This classification system works in a black-box
manner—with no access to the web application’s code, only the
HTTP redirect response content.

In summary, we provide the following contributions:

• A black-box approach to detecting a class of EARs (more
precisely, information-leakage EARs).

• A classification tool based on the proposed approach that can
automatically and efficiently identify EARs.

• A quantification of information-leakage EARs on the Inter-
net based on a large-scale crawl of web applications. We
found 2,173 likely vulnerable EARs across 416 domains.

2. EXECUTION AFTER REDIRECT
An Execution After Redirect is broadly defined as any unin-

tended (from the perspective of the developer) server-side code that
is executed after a redirect call. In this way, an EAR is an uninten-
tional control flow vulnerability: The developer does not intend for

1301, 302, 303, 304, or 307 all indicate a redirect.

1 <?php

2 if (!$user->is_premium_member())

3 {

4 header("Location: /signup.php");

5 }

6 echo "Premium content that requires a subscription.";

7 ?>

Listing 1: Example of PHP code where execution continues after
the redirection is triggered by the header function.

HTTP/1.1 302 Found

Server: Apache/2.2.3 (CentOS)

X-Powered-By: PHP/5.1.6

Set-Cookie: PHPSESSID=oj5intb9382pmevfm92pbm7bj7; path=/

Location: /login.php?auth=false

Content-Type: text/html; charset=ISO-8859-1

<html>

<head><title>FootPlus: Player Statistics</title></head>

<body>

<div id="main_container">

Player Name: Christopher Vigna

Position: TE

Avg Yds: XYZ

Avg Points: X

... More Content ...

</div>

</body>

</html>

Listing 2: Raw HTTP response adapted from a real EAR our
crawler found. The response code is 302, yet there is content in
the body. In this case, the content requires a paid subscription to
access, yet it is sent in the response body.

the code to be executed. However, because of his misunderstand-
ing of the redirection semantics of the web application framework,
unintended code is executed anyway. Note that EARs defined in
this way are bugs but not necessarily security-critical flaws. An
EAR can become security-critical depending on what code is exe-
cuted after a redirect. Therefore, the severity of an EAR is entirely
application-specific.

A security-critical EAR can compromise the environment of the
web application in two ways: (1) permanently change the state
of the web application or (2) leak sensitive information in the re-
sponse. We call EARs that leak sensitive information in the re-
sponse explicit, and those that do not leak any information silent.

Frameworks, depending on their architecture, design, and language,
may allow silent EARs, explicit EARs, or both [10].

Listing 1 shows an example of an EAR in server-side PHP code.
Line 2 checks if the user is a premium member, and if not, the
header function on Line 3 is invoked to redirect the user to a page
where she can purchase a premium account. However, because
header() does not halt execution, the control flow will continue
and the premium content will be sent on Line 4. While this example
is simplistic, we refer the interested reader to previous research for
more complex examples [10].

Listing 2 shows a raw HTTP response adapted from an EAR
we discovered in the wild. The EAR exists on a web application
that sells American-football statistics, however a request to a page
with the player’s statistics leaks the data the application is selling.
As shown in Listing 2, the response code is 302, and there is a
location header redirecting the user to the login page. However,
the full content (in this case the player’s statistics) is leaked after
the headers. Note that this is equivalent to leaking the proprietary
contents of the site’s database to unauthenticated users.

An Execution After Redirect vulnerability can violate the confi-
dentiality, integrity, or both of a web application. Confidentiality

is violated through information leakage (as shown in Listing 2),
where private data requiring an access fee is sent in the response.
The integrity of the web application can be threatened when the
server-side code continues to execute after failing an access-control
check. In these attacks, an unauthorized user can change the state of
the web application, often by modifying the database. An example
of this type of vulnerability is a forum where a non-administrator
user can change the title of a thread [10].

EAR vulnerabilities have been studied only recently. We found
the first public EAR instance in the Common Vulnerabilities and
Exposures (CVE) database in 2007, as CVE-2007-2003. There
is also an entry2 in the Common Weakness Enumeration (CWE)
database (a community-developed list of software weaknesses) from
2008 called “Redirect Without Exit.” However, even with this clas-
sification, no CVE entry is associated with this CWE entry. This
lack of association shows that even if the community at large might
have been exposed to the concept of EARs, they do not use this
category to classify discovered EARs.

EARs have received little direct attention from the research com-
munity, nonetheless, there is evidence of EARs in some of the liter-
ature. For instance, Swaddler [8] found an EAR in the PHP BloggIt
web application, however the authors did not identify it as such. In
addition, as previously reported by Doupé et al. [10], Felmetsger et
al. discovered an EAR in a Java web application and did not iden-
tify the vulnerability as an EAR [11]. Chaudhuri and Foster present
a Ruby on Rails example, UsersController, that contains an
unmentioned EAR vulnerability [5]. Finally, EAR vulnerabilities
are subtle and can occur even in published peer-reviewed papers.
For instance, Sun, et al. incorrectly model the semantics of redirec-
tion in PHP, thus ignoring and missing EAR vulnerabilities [23].

3. EAR DETECTION
We developed a black-box classification system to detect differ-

ent types of EAR vulnerabilities. In the following, we describe
the types of vulnerabilities that we identify and our detection tech-
nique.

3.1 White-Box vs. Black-Box
For automated vulnerability discovery, one can follow two major

approaches: white-box and black-box testing.
White-box testing analyzes the application’s source code. In this

way, the testing tool obtains a view of the entire application, includ-
ing all entry points. Typically, a control flow graph (CFG) is cre-
ated, and data flow techniques are used to find paths from the points
where external information (e.g., user input) is read (sources) to
security-critical operations (sinks). If insufficient sanitization is
performed along one of these paths, the application contains a vul-
nerability (e.g., a SQL injection if the sink was a SQL query).

While a white-box testing approach derives a full view of an ap-
plication, it can only analyze applications written in the specific
language that the tool targets.

Black-box analysis approaches operate without any knowledge
of the internal working of the application: The internal state of the
application and its source code are unknown. A black-box web vul-
nerability analysis tool sends requests to the web application and
observes the associated responses. The idea is to detect vulnerabil-
ities in a way that is independent of the underlying language.

Because they are not language-dependent, black-box tools are
able to operate on a wide range of applications. In addition, black-
box tools usually suffer from fewer false positives when compared
to white-box tools. The lack of false positives is due to the black-

2CWE-698

box tool actually exercising the application and exploiting the vul-
nerability. However, black-box tools suffer from a discoverability
problem: They cannot find a vulnerability in code that they fail to
execute.

The black-box approach we took to detect information leakage
EARs has the possibility of false positives. These false positives are
due to the black-box nature of our approach: We do not know for
certain if the information leaked is the result of an EAR or is from
a legitimate HTTP redirect response. Moreover, the content of the
leaked information along with the way the web application uses
that information determines the severity of the EAR—therefore au-
tomatically determining the severity of the information leakage will
have false positives.

3.2 Black-Box EAR Detection
The goal of our approach is to detect EARs in a black-box man-

ner. EARs need not be directly visible externally: code executing
after a redirect could, for instance, change the server-side state. We
limit ourselves to analyzing the HTTP response of the web applica-
tion. For an HTTP response to indicate an EAR vulnerability, two
things must be true. First, by definition, the response must be an
HTTP redirect response. Second, the HTTP redirect response con-
tent must divulge confidential information about the web applica-
tion. Therefore, our system attempts to detect if the HTTP redirect
response content divulges confidential information, thus indicating
a potential EAR.

3.3 Classification of non-EARs
To develop this classification system, we manually analyzed the

initial results from our large-scale crawl of the Internet. From
this analysis, categories emerged. It is from these categories—
developed by looking at actual content of redirect response—that
we created the non-EAR and EAR classification categories.

In the following we describe the heuristics we use to make the
distinction between legitimate content (non-EAR) and EAR con-
tent. We first identify as legitimate responses that are empty. Then
we developed a number of string patterns that match text commonly
used in legitimate redirections3. There is no standard format for
such messages, but we found common patterns because the HTTP
redirect responses are sent by a few well-known web frameworks.
We also consider as legitimate responses in which the body of the
HTTP redirect response is a near duplicate of the page the redirec-
tion leads to. This is because, obviously, no additional, sensitive in-
formation was revealed to the client. Then, we discard broken and
malformed HTML content which typically contains page headers
or navigation menus.

Framework Redirect

We examined a number of the most popular web frameworks and
the web pages they produced as part of the redirection process.
From these pages, we were able to extract a set of signatures (reg-
ular expressions) that help us identify such content.
Generic Redirect

In the general case, the content of a redirect message aims to warn
a user of a changed location. Therefore, we manually developed
regular expressions by analyzing a large corpus of data during our
experiments. Overall, we developed 110 such signatures.
Irrelevant or Broken Content

These are HTTP redirect responses whose content is not syntac-
tically correct or contains very little information. To estimate the

3An example regular expression pattern is:
<title>(30[123])?document moved
((permanently)|(temporarily))?</title>

value and extent of information in an HTTP redirect response, we
first remove all the HTML tags (so that only text content is left).
If less than n words are left, we consider the content to be irrele-
vant. With this irrelevant content, it is clear that server-side code
has been executed but, due to the lack of information, we cannot au-
tomatically determine the severity of the flaw; so we classify these
as non-security critical.
Near Duplicate

Near duplicate detection recognizes cases in which content of the
redirect page is similar or identical to the redirect location’s con-
tent. We utilize the well-known Normalized Compression Distance
(NCD) to rapidly compute an approximation of the similarity be-
tween the HTTP redirect response content and the redirect loca-
tion’s content [7]. These are not EARs, because the information
contained in the HTTP redirect response is very similar to the tar-
get page that is presented to the user.

3.4 Classification of EARs
Once we are left with content of the redirect page that is not obvi-

ously legitimate, we divide the remaining redirects using heuristics
that attempt to identify different cases based on their severity. Note
that our classification system processes the content of the redirect
page in a precise order that will be explained in Section 3.5.

Error Message

Some of the content sent by the server contains error messages,
which we wish to capture in a category. So we put in this category
potential security-critical errors such as PHP errors and Java errors.
Content of the redirect page in this category discloses information
about paths of the server, details about the framework, the language
and often, their version number. Black-box vulnerability scanners
look for the same error messages when scanning a web applica-
tion. We developed 11 regular expressions to classify the response
content as an Error Message.

HTTPS Redirect

This category consists of responses from the server in which the
HTTP redirect response contains a full web page and the redirect
leads to a page served through a secure channel (via HTTPS). We
consider this a security-critical EAR because, by redirecting to a
secure channel, the web application is signaling that the content is
sensitive. Yet, the web application sends some content in the clear.
Pre-Login Access

Responses from this category redirect to a login page. The intu-
ition here is twofold: (1) when one tries to access a restricted re-
source the web application will redirect her to a login page, and
(2) the restricted content of the redirect page will contain links to
restricted content. Here, we attempt the capture the (application-
specific) logic of a web application requesting authentication from
a user.

To detect this type of security-critical EAR, we select links inside
the response body, in addition to the one in the Location header,
that also cause an HTTP redirect response. If, among these links, a
significant amount (80%, explained in Section 3.6) leads to a login
page, we classify them in this category.
Transparent Barrier

This category classifies responses which contain links that, when
requested, redirect to the same page. Web application developers
sometimes want the user to visit a certain page prior to allowing
access to the full content of the web application. For example the
user is redirected to the same page until she has “signed” a Terms
of Use form. These cases are considered as a non-security–critical
EAR because the information they limit the access to is available
after visiting the special page.

Extracts the links

Download the pages

Distance

Matrix

L1

2L

3L

HTTP 302

302

200 OK

302

R1

200 OK

R3

200 OK

Figure 1: Heuristic’s diagram of the Transparent Barrier category.

To classify content of the redirect page in this category, we ex-
tract all the links on the HTTP redirect response (L1, L2, and L3 in
Figure 1) and request the corresponding pages. From those requests
that redirect, and contain content (R1 and R3 in Figure 1), we com-
pute the NCD similarity of each content to every other content. If
a certain percentage (discussed in Section 3.6) is very similar, then
the original response is considered to be a Transparent Barrier. The
intuition here is that we wish to capture instances where content is
hidden behind a barrier.
Other

This category encompasses content of the redirect page that did not
match any of the previous categories.

The previously-discussed categories provide a way to assess the
potential severity of the content of the redirect page. Instances
matching the Framework, Generic Redirect, and Near Duplicate

categories, even though they send content after a redirect, are not
EARs. However, EARs in the other categories point to possible
logic flaws.

3.5 Classification Pipeline
The goal of the classification process is to separate the security-

critical EARs from the legitimate content. To do this, we applied
each categorization to the content of the redirect page in a precise
order to improve the accuracy of each category as well as the over-
all efficiency. A diagram of the classification pipeline is given in
Figure 2.

The order we classify EARs is critical. This order acts as a pipe-
line; the content of the redirect page is placed in the first category
that it matches. We apply Empty Redirect first because it is fast and
allows us to reduce the remaining HTTP redirect responses by 49%.
We then separate the Framework Redirect and after apply Generic

Redirect, which removes 45% of the remaining HTTP redirect re-
ponse.

Prior to extracting the security-relevant EARs, we noticed in-
stances of HTTP redirect response that were not leaking informa-
tion. We needed at this stage of the pipeline to apply the filter of a
security-relevant category: Error Message. These potential errors
messages are often not HTML or are short, thus we apply the Error

Message category before the Irrelevant category.
Then, after the Irrelevant category, we filter the HTTPS responses.

Disclosing information on a clear channel through the redirection
can allow an eavesdropper to redirect the traffic from a login form
running over SSL to a clear channel. The latter category is ap-
plied before the Near Duplicate category because HTTPS redirect
response are frequently similar to the target body content, therefore
the classification must occur before the Near Duplicate category.

After Near Duplicate, there are two more categories that are sim-
ilar but each attempts to capture a different aspect of the HTTP
redirect response content. The Pre-Login Access filter searches for
information leakage, characterized by links within the HTTP redi-
rect response content that redirects the user to a login page. On
the other hand, the Transparent Barrier looks for the pattern when

most of the HTTP redirect response redirect to the same page. In
this way, Transparent Barrier is more general than Pre-Login Ac-

cess, thus, we classify Pre-Login Access before Transparent Bar-

rier. We make a distinction between the two categories because
Pre-Login Access indicates a lack of authorization and is thus more
severe than the Transparent Barrier category.

3.6 Classification Thresholds
Our EAR categorization requires setting thresholds for the Irrel-

evant, Near Duplicate, Pre-Login Access, and Transparent Barrier

categories. Changing any of these parameters alters the false posi-
tives and false negatives of the EAR categorization process. In fact,
the security-critical EARs are interspersed along the classification
pipeline. To determine appropriate values for these thresholds we
performed experiments—using a subset of the data we collected
by crawling the Web (described in Section 4.1)—in which we var-
ied each threshold to quantify its influence on the classification of
its category. We first selected a random day of crawling for the
classification subset, and then we manually categorized every con-
tent of the redirect page in the subset. Finally, for each category’s
threshold, we varied the threshold to understand how it affected the
categorization.

Figure 3 shows a ROC curve for each of the four categories that
use a threshold. A cross on the graph denotes where we chose
the threshold. The rest of this section describes in more detail
the threshold selection process for each categorization component’s
threshold.

3.6.1 Irrelevant.

The Irrelevant categorization component analyzes how much in-
formation the HTTP redirect response content contains, based on
how much non-HTML content is present. The HTTP redirect re-
sponse content will match this category if the content has less than
the threshold number of non-HTML–markup words. We ran ten
experiments, ranging the threshold from 10 to 100 words.

Figure 3(a) shows the ROC curve for the Irrelevant threshold.
Because this category comes before the EAR categories in the pipe-
line, false positives are EARs that would be caught by the EAR
categories; thus, false positives are costly. Therefore, we chose
a value of 60 words for the Irrelevant threshold. As seen on the
ROC curve, Figure 3(a), increasing this threshold will allow more
false positives, which we are trying to minimize, and decreasing
this threshold will reduce the true positive rate significantly.

3.6.2 Near Duplicate.

The Near Duplicate categorization component uses the Normal-
ized Compression Distance as a threshold which ranges from 0 to
1. This threshold can be adjusted: Lower thresholds will match
results that are more similar than a higher threshold.

The Near Duplicate, like the Irrelevant category, is classified in
the pipeline before the EAR categories. Thus, any false positives
that end up in this category are potential EARs that would be cat-
egorized in an EAR category. Therefore, we wish minimize false
positives as much as possible.

Figure 3(b) shows the 10 experiments we ran, ranging the thresh-
old from 0 to 1. As can be seen from Figure 3(b), our chosen
threshold, 0.5, reduces the false positives while still classifying a
good portion of similar content.

3.6.3 Pre-Login Access.

The threshold, in the Pre-Login Access categorization compo-
nent, is the percentage of links on the page that also redirect to a

Empty Framework

Other

Generic
Error

Message
Irrelevant

HTTPS
Near

Duplicate
Pre-Login

Access

Transparent

Barrier

Figure 2: Flow of the redirects throught the multi-step classification pipeline.

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

o
si

ti
v
e

R
at

e

False Positive Rate

(a) Irrelevant

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

o
si

ti
v
e

R
at

e

False Positive Rate

(b) Near Duplicate

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

o
si

ti
v
e

R
at

e

False Positive Rate

(c) Pre-Login Access

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

o
si

ti
v
e

R
at

e

False Positive Rate

(d) Transparent Barrier

Figure 3: ROC curves of threshold experiments. A cross denotes where we chose our threshold.

login page. To test this threshold, we performed 10 experiments
with different percentages.

For this category, we chose a threshold of 0.8, which is shown
in Figure 3(c) as a cross. However, it appears in Figure 3(c) that
there is a better threshold, which corresponds to 0.4. However,
this is an unfortunate quirk of our testing data; there were only 15
Pre-Login Access redirect content in the testing data. The lack of
data is a side-effect of the rarity of this category, in fact, our final
classification found only 0.053% of these out of the total content of
the redirect page. We chose 0.8 over 0.4 as the threshold because
it is a tighter threshold and will allow less false positives into the
Pre-Login Access category.

3.6.4 Transparent Barrier.

To determine the threshold for the Transparent Barrier catego-
rization component, which controls how many links on an HTTP
redirect response content must redirect to the same page for it to be
classified as Transparent Barrier, we performed 10 experiments,
ranging the threshold from 0 to 1. The results of the experiments
are shown in Figure 3(d). We chose a value of 0.5 because in-
creasing the threshold any further increases the false positive rate
without increasing the true positive rate. One can see that after
this point the ROC curve plateaus. This gives the category a false
positive rate of 26% and a true positive rate of 55%.

4. EXPERIMENTAL EVALUATION
To investigate the prevalence of EARs on the Web, we performed

a large-scale Web crawl looking for content sent after a redirection.
We then classified the content of the redirect page according to the
categories we developed.

Crawling Period 52 days

Average Speed 164,472 pages/day
Pages Downloaded 8,097,283
Total Domains 255,957
Total Redirections 1,708,771

Table 1: Statistics of a large-scale crawl of the Internet.

4.1 Crawling
We needed a web crawler to find a large number of content of

redirect page on which to apply our black-box EAR detection. We
required two properties: (1) the ability to store the content of the
redirect page and (2) to execute JavaScript. To find such a crawler,
we looked at available open-source projects, such as Nutch 4 and
Heritrix 5. Unfortunately, both did not index the redirection body’s
content and did not execute JavaScript. To the best of our knowl-
edge, there was no open-source large-scale crawler that also exe-
cuted JavaScript.

Due to the limitations of available crawlers, we developed our
own large-scale, high-fidelity web crawler. We discover more URLs
while executing JavaScript: On average, we find about 5% more
links with JavaScript execution, which increases the search space
for EARs.

Table 1 shows the size of the dataset collected in 52 days of
crawling. We downloaded 8,097,283 pages from 255,957 distinct
domains. Of these pages, 1,708,771, or 21.11% were HTTP redi-
rect response.

Table 2 shows the results of our classification system on the
1,708,771 redirect pages. The results are shown by category, sep-

4http://nutch.apache.org/
5
http://sourceforge.net/projects/archive-crawler/

Code Empty Framework Generic Irrelevant N. Duplicate Error HTTPS Pre-Login Access T. Barrier Other

301 337,089 4,487 312,719 22,014 1,524 82 228 137 1,083 2,843
302 477,757 47,350 450,002 30,290 798 340 596 766 833 792
303 14,284 4 2,353 367 1 23 0 1 1 7

Total 829,130 51,841 765,074 52,671 2,323 445 824 904 1,917 3,642

Security-Critical EARs = 2,173 Benign EARs = 5,559

Total Legitimate = 1,701,039 Total EARs = 7,732

Table 2: Classification of 1,708,771 redirect content that was collected over a period of 52 days.

You have an error in your SQL syntax; check the manual

that corresponds to your

MySQL server version for the right syntax to use near ''

at line 4

SELECT b.watch AS watch,b.friendtypeid AS friendtypeid,

minutesago(u.logdate) AS age, u.username AS username,

b.friendid AS userid, u.logdate AS logdate

FROM friends b

LEFT JOIN users u ON u.userid = b.friendid

WHERE b.userid =

Listing 3: 302 Found response body content leaking a SQL
request adapted from a real EAR that our crawler found.

arated by HTTP response code, followed by the totals. Of the
1,708,771 HTTP redirect response we discovered in the wild, 40%
are 301, 59% are 302, and 1% are 303. A significant portion
of the HTTP redirect response are concentrated in the Empty and
Generic categories, as expected. However, there is a large amount
of content of redirect page in the Irrelevant category with a to-
tal of 52,671 HTTP redirect response. Our classification system
found 2,173 security-critical EARs spread out over 416 distinct do-
mains; this result demonstrates that EARs are a serious problem
that plagues real-world web applications.

To get a handle on how effective our heuristics are, we eval-
uate the false positives of our classification approach. To evalu-
ate the false positives, we randomly sampled 100 HTTP redirect
responses from each security-critical EAR category and manually
verified them.

Table 3 shows the results from the manual evaluation of the ran-
dom sampling. The HTTPS and Error Message categories are ac-
curate with 3% and 0% of false positives, respectively. The false
positives for the Error Message category is so low because we
are searching for specific error messages that are unlikely to ap-
pear in legitimate pages. The HTTPS category still contains unfil-
tered generic or irrelevant content. Because our heuristic to detect
generic content is not complete, we have false positives that display
information for the user.

The Pre-Login Access category has a false positive rate of 13%.
The uniqueness of each web application remains the main cause of
these false positives. Irrelevant responses end up in the Pre-Login

Access category because they had sufficient non-HTML words to
bypass the Irrelevant threshold, but did not leak any information.
Finally, the Pre-Login Access category suffers from the problem of
a login form being present on every page in a web application.

In an effort to improve the security of the web sites in our crawl,
we contacted 50 web sites, via email or contact form, that con-
tained security-critical EAR vulnerabilities that our crawl discov-
ered. Five developers replied to our vulnerability notification. Of
these, two developers fixed the EAR vulnerability and three thanked
us for the notification and said that they would look into the vulner-
ability. We believe this shows that this is a vulnerability that is
misunderstood by developers yet they believe that it is a serious
enough vulnerability to fix.

4.2 Interpretation
As previously mentioned, the content of redirect page is diverse.

We saw a variety of content: non-sensitive content, page duplica-

Category Percentage False Positive
HTTPS 3%

Error Message 0%
Pre-Login Access 13%

Table 3: Percentage of false positives calculated by manual analysis
of a random sampling of 100 redirects of each security-critical EAR
category.

tion, half-formed HTML pages, just JavaScript (no HTML) pages,
navigation bars with no content, and unidentifiable (junk) content.

A confusing type of content of redirect page we found were
empty pages that contain only white spaces and tabulations. We
cannot definitively determine what is causing this, but we believe
that some code execution happened on the server because the in-
dentation appears to be source code. Here, without additional in-
formation from the developer we cannot attest if it is a bug.

Next, we discuss the content that ended up in each security-critical
EAR category.

4.2.1 HTTPS Redirect.

The web application developer wants to secure data transmission
when she sends information over SSL. However, due to an EAR,
this private information is sent in the clear for content of redirect
page that was classified as HTTPS Redirect. Here, the privacy and
confidentiality of the data is compromised if an attacker can eaves-
drop on the conversation.

Two particular, security-critical, examples stand out from our
dataset. The first is an HTTP redirect response that we analyzed
from a web application selling financial trading services. This re-
sponse gives access to a (private) information request form in the
clear. Although we did not try—due to ethical considerations—we
suspect that the web application would allow us, as non-authenticated
users, to submit the form and request the information.

The second example HTTP redirect response is similar to the
Pre-Login Access category: The content of the redirect page leaks
a film’s review form that is only available to registered users on a
popular film database. However, the application sends us this form
in the content of the redirect page.

4.2.2 Error Message.

The Error Message category outputs sensitive information about
the technology used by the web application. We found in this cate-
gory Java stack traces, SQL errors, and PHP source code. Listing 3
shows a SQL error EAR that we adapted from one found in the
wild. These types of information leakage ease the work of an at-
tacker who is attempting to exploit the web application thanks to
information about local paths or SQL query syntax.

4.2.3 Pre-Login Access.

Inside the Pre-Login Access category, the most common type of
EAR was the one where content of the page was displayed even
though we were not authenticated. The web application detects
our lack of access rights, and it redirects us to a login page. The
application is aware that we are not authenticated (as evidenced
by the redirection) but still outputs the content of the web page.
Listing 2 shows a canonical example from this category. This web

application sells sports statistics. Our crawler discovered an EAR
that lets anyone access the private content.

In a similar fashion, we found an EAR on a social networking
web application where anyone can access a user’s profile inside
the content of the redirect page, thus violating that user’s privacy.
A conclusion that can be drawn from this type of EAR is that it
indicates that the authentication mechanism of the web application
is flawed. The harm is specific to the web application and can affect
the web application’s owner or the user as well.

4.2.4 Transparent Barrier.

Even though Transparent Barrier is a category that contains be-
nign EARs—that is, there is HTTP redirect response content and
server-side execution, however the information leaked is not security-
critical—the results of this category surprised us. Often, the body
of the HTTP redirect response is outdated versions of the web ap-
plication. Instead of removing the content, developers set a redi-
rection but keep the old web application version. It is clear that the
web developers do not want the content to be accessible, however,
the old content is leaked in the response.

Another example is a domain name that has been sold. The do-
main then redirects, via a 301 response code, to a different domain.
We believe this is done for SEO purposes, as the 301 is permanent
and transfers the so called “Google juice,” or search engine impor-
tance, to the new domain. However, the former domain still runs
the code of the old web application and sends the old web appli-
cation’s output in the content the redirect page. We also saw in-
stances where the barrier required a user to select a country, supply
the user’s age, or accept Terms of Use while still sending the data
to which the barrier prevents the access.

4.2.5 Other.

The Other category was the last stage of the pipeline; any con-
tent that did not match one of the other categories landed here.
This category contains diverse content, however we will focus on
two types: legitimate HTTP redirect responses and security-critical
EARs.

Legitimate content is, for example, an HTTP redirect response
that displays enough words to bypass the Irrelevant category’s thresh-
old and does not match a regular expression of the Generic cate-
gory. This misclassification is due to the fact that our regular ex-
pressions are focused on English language content, while the In-
ternet is international. We could improve this by creating regular
expressions that target a diverse set of languages.

The security-critical EARs were not classified in the proper cat-
egory for one of two reasons. They were either application-specific
error messages, where the error message was too specific to match
the more generic regular expressions of the Error Message cate-
gory. The other security-critical EARs that were in Other are those
that should have been in Pre-Login Access, however, the HTTP
redirect responses did not have enough links leading to a login page
to match the Pre-Login Access threshold.

We do not consider the Other category to be security-critical
because we were unable to broadly categorize the security rele-
vance of these EARs. However, because legitimate content was
already classified earlier in the pipeline by the Empty, Framework,

Generic, Irrelevant, and Near Duplicate categories, the content in
the Other category has a large percentage of potentially security-
critical EARs. In fact, a random sampling of the Other category
found 59% security-critical EARs. This result shows that the Other

category can be a valuable source of potentially vulnerable EARs.

4.3 Limitations
Due to the black-box approach we took to detecting Execution

After Redirect vulnerabilities, we are limited to discovering explicit
EARs only. Our approach does not attempt to infer the web applica-
tion’s state, and, therefore, we only find EARs that leak information
in the content of the redirect page.

Our classification method uses heuristics that were built by man-
ually analyzing the initial data collected, and, as a result, our ap-
proach is prone to both false positives and false negatives. The
main reason for false negatives is the diversity of content of redirect
page; however, we believe that our heuristics capture the essential
semantics of information leakage EARs. False positives will occur
because each web application is different.

False positives that appear in all EAR categories are the typical
redirect message whose body is in a non-English language. Even if
our regular expressions could still capture most of the generic con-
tent, every web application developer has the ability to customize
the content sent in the HTTP redirect body. Thus, these legitimate
HTTP redirects are misclassified and can land in HTTPS, Pre-Login

Access, Transparent Barrier, and Other, depending on the features
present in the web application. Nonetheless, they are more frequent
inside the default category Other.

Misclassified Error Message responses are found in Irrelevant

and Other categories because we are not exhaustive in the search
of these errors. False negatives of the Pre-Login Access category
can be found in HTTPS and Other. The HTTPS misclassification
is due to the order of our pipeline: HTTPS categorization is done
before Pre-Login Access. Pre-Login Access redirect content can
end up in Other due to the threshold.

Even though our approach has both false positives and false neg-
atives, the categorization process significantly reduces the amount
of content of redirect page that an analyst must review in order to
discover security-critical EARs.

Because we built the heuristics after in-depth manual analysis
of a subset of the crawling data, our categories are biased towards
trends we saw in this subset. It is possible that the frequency of
these categories is not representative of the whole Web. However,
we constructed the categories to be broad enough to enclose essen-
tial features of the security-critical EARs.

5. RELATED WORK
The work presented in this paper is at the intersection of multi-

ple topics of security research: vulnerability discovery, black-box
vulnerability detection, and logic flaws.

There have been many approaches to automatically detect se-
curity vulnerabilities in web applications. Most approaches track
the information flow through the application, using static or dy-
namic analysis, and offer an overview of how secure the applica-
tion is regarding a known vulnerability. Many approaches attempt
to discover vulnerabilities via white-box analysis of the web appli-
cation’s source code [1, 3, 5, 10, 17–19, 22, 23]. Among the white-
box approaches, our work is closely related to Doupé et al. work
which detected EARs in Ruby on Rails web applications via static
analysis of the source code [10].

We use a black-box approach to detect EARs in web applica-
tions. Another approach to detecting vulnerabilities in web applica-
tions is using a black-box web vulnerability scanner, which actively
attempts to exploit the web application to discover vulnerabilities.
Huang et al. developed one of the first tools for black-box analy-
sis of security vulnerabilities [16]. Other tools were developed to
improve black-box web vulnerability scanners [2, 15, 20], and at-
tempts were made to evaluate the capabilities of open-source and

commercial black-box web vulnerability scanners [4, 9, 14, 24, 25].
Unlike black-box web vulnerability scanners, we did not fuzz the
web applications, instead, we passively analyzed web applications
to understand the prevalence of EARs on the Internet.

Because EARs are a logic flaw in a web application, our work
is related to research on logic flaws. Felmetsger et al. developed a
white-box tool to assess logic flaws in web applications [11]. They
were able to find an EAR in GIMS, an HR web application, through
dynamic analysis and symbolic model checking. Wang et al. ana-
lyzed logic flaws in how web applications use Cashier-as-a-Service
APIs [26]. Li and Xue used a gray-box approach to detect state vi-
olation attacks against web applications [21], while Sun et al. used
static analysis to detect the same type of vulnerability in PHP web
applications [23].

In comparison, our approach is focused on vulnerability discov-
ery and is intended to find a specific logic flaw through a black-box
approach. However, to our knowledge, no other research has been
done to understand the prevalence of EARs on the Internet. With-
out being intrusive, from the point of view of the web application,
we managed to discover vulnerable EARs on the Internet.

6. CONCLUSION
We have shown, using a novel approach, that Execution Af-

ter Redirect vulnerabilities, despite being relatively obscure, are
widespread on the Internet. These vulnerable web applications are
leaking sensitive information to anyone who asks for it. And, be-
cause we used a passive approach, it may be possible to leverage
deeper interaction with the web application while crawling to dis-
cover even more EARs. We hope that this work raises awareness
of this prevalent security vulnerability.

7. REFERENCES
[1] An, J., Chaudhuri, A., Foster, J.: Static Typing for Ruby on

Rails. In: Proceedings of the 24th IEEE/ACM Conference on
Automated Software Engineering (ASE’09). pp. 590–594.
IEEE (2009)

[2] Balduzzi, M., Gimenez, C., Balzarotti, D., Kirda, E.:
Automated Discovery of Parameter Pollution Vulnerabilities
in Web Applications. In: Proceedings of the 18th Network
and Distributed System Security Symposium (2011)

[3] Balzarotti, D., Cova, M., Felmetsger, V.V., Vigna, G.:
Multi-module vulnerability analysis of web-based
applications. In: Proceedings of the 14th ACM conference
on Computer and communications security. ACM (2007)

[4] Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the
Art: Automated Black-Box Web Application Vulnerability
Testing. In: Security and Privacy (SP), 2010 IEEE
Symposium on. pp. 332–345. IEEE (2010)

[5] Chaudhuri, A., Foster, J.: Symbolic Security Analysis of
Ruby-on-Rails Web Applications. In: Proceedings of the
17th ACM Conference on Computer and Communications
Security (CCS’10). pp. 585–594. ACM (2010)

[6] Christey, S., Martin, R.A.: Vulnerability Type Distribution in
CVE. Tech. rep., MITRE Corporation (May 2007)

[7] Cilibrasi, R., Vitanyi, P.: Clustering by Compression.
Information Theory, IEEE Transactions on 51(4), 1523 –
1545 (april 2005)

[8] Cova, M., Balzarotti, D., Felmetsger, V., Vigna, G.:
Swaddler: An Approach for the Anomaly-based Detection of
State Violations in Web Applications. In: Proceedings of the
10th international conference on Recent advances in
intrusion detection. vol. 4637. Springer (2007)

[9] Doupé, A., Cova, M., Vigna, G.: Why Johnny Can’t Pentest:
An Analysis of Black-box Web Vulnerability Scanners. In:
Proceedings of the Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA). Bonn,
Germany (July 2010)

[10] Doupé, A., Boe, B., Kruegel, C., Vigna, G.: Fear the EAR:
Discovering and Mitigating Execution After Redirect
Vulnerabilities. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security
(CCS 2011). Chicago, IL (October 2011)

[11] Felmetsger, V., Cavedon, L., Kruegel, C., Vigna, G.: Toward
Automated Detection of Logic Vulnerabilities in Web
Applications. In: Proceedings of the USENIX Security
Symposium. Washington, DC (August 2010)

[12] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-Lee, T.: Hypertext Transfer Protocol –
HTTP/1.1 (June 1999), http://www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html

[13] Fossi, M., Egan, G., Haley, K., Johnson, E., Mack, T.,
Adams, T., Blackbird, J., King Low, M., Mazurek, D.,
McKinney, D., Paul, W.: Internet security threat report. Tech.
rep., Symantec Corp (April 2011), vol. 16

[14] Grossman, J.: Challenges of Automated Web Application
Scanning. Blackhat Windows 2004 (2004)

[15] Halfond, W., Choudhary, S., Orso, A.: Penetration testing
with improved input vector identification. In: Software
Testing Verification and Validation, 2009. ICST’09.
International Conference on. pp. 346–355. IEEE (2009)

[16] Huang, Y.W., Huang, S.K., Lin, T.P., Tsai, C.H.: Web
Application Security Assessment by Fault Injection and
Behavior Monitoring. In: Proceedings of the 12th
international conference on World Wide Web. pp. 148–159.
WWW ’03, ACM, New York, NY, USA (2003)

[17] Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo,
S.Y.: Securing Web Application Code by Static Analysis and
Runtime Protection. In: Proceedings of the 13th international
conference on World Wide Web. pp. 40–52. WWW ’04,
ACM, New York, NY, USA (2004)

[18] Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities
(Short Paper). In: Proceedings of the 2006 IEEE Symposium
on Security and Privacy. pp. 258–263 (2006)

[19] Jovanovic, N., Kruegel, C., Kirda, E.: Precise Alias Analysis
for Static Detection of Web Application Vulnerabilities. In:
Proceedings of the 2006 workshop on Programming
languages and analysis for security. ACM (2006)

[20] Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: Secubat: a
Web Vulnerability Scanner. In: Proceedings of the 15th
international conference on World Wide Web. pp. 247–256.
ACM (2006)

[21] Li, X., Xue, Y.: BLOCK: A Black-box Approach for
Detection of State Violation Attacks Towards Web
Applications. In: Proceedings of the Annual Computer
Security Applications Conference (ACSAC 2011). Orlando,
FL

[22] Livshits, B., Lam, M.: Finding Security Vulnerabilities in
Java Applications with Static Analysis. In: Proceedings of
the 14th conference on USENIX Security Symposium -
Volume 14. USENIX Association (2005)

[23] Sun, F., Xu, L., Su, Z.: Static Detection of Access Control
Vulnerabilities in Web Applications. In: Proceedings of the
20th USENIX conference on Security. pp. 11–11. SEC’11,
USENIX Association, Berkeley, CA, USA (2011)

[24] Suto, L.: Analyzing the Accuracy and Time Costs of Web
Application Security Scanners (2010)

[25] Vieira, M., Antunes, N., Madeira, H.: Using Web Security
Scanners to Detect Vulnerabilities in Web Services. In:
Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP
International Conference on. pp. 566–571. IEEE (2009)

[26] Wang, R., Chen, S., Wang, X., Qadeer, S.: How to Shop for
Free Online: Security Analysis of Cashier-as-a-Service
Based Web Stores. In: Security and Privacy (SP), 2011 IEEE
Symposium on. pp. 465 –480 (may 2011)

[27] Williams, J., Wichers, D.: Owasp top 10 - 2010 the ten most
critical web application security risks. Tech. rep., The
OWASP Community (2010)

