
UNIVERSITY OF CALIFORNIA

Santa Barbara

Advanced Automated Web Application

Vulnerability Analysis

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Adam Loe Doupé

Committee in Charge:

Professor Giovanni Vigna, Chair

Professor Christopher Kruegel

Professor Ben Hardekopf

September 2014

The Dissertation of

Adam Loe Doupé is approved:

Professor Christopher Kruegel

Professor Ben Hardekopf

Professor Giovanni Vigna, Committee Chairperson

April 2014

Advanced Automated Web Application Vulnerability Analysis

Copyright © 2014

by

Adam Loe Doupé

iii

Acknowledgements

I would like to thank the following people who, with their love and support, encour-

aged and motivated me to finish this dissertation.

Giovanni is the reason that I became addicted to computer security: From the mo-

ment that I took his undergrad security class I was hooked. I am forever indebted to

him because he has constantly invested his time in me. First, by inviting me to join

his hacking club. Then, he took a chance on mentoring a Master’s student, and, upon

graduation for my Master’s degree, told me that I could “come back for the real thing.”

One year later I did, and I don’t regret it for a second. I hope that I always have the

enthusiasm and energy that Giovanni brings to research and life. He is truly a role

model.

From Chris, I learned a great deal about what it means to be an academic and a

scientist. He is able to focus so intensely on the details of the project while not loosing

sight of the bigger picture—if I am able to do this half as well I will consider myself a

success. He constantly inspires and encourages me to heights I never dreamed possible.

I would never have been able to finish this dissertation without the help and encour-

agement of all the past and current seclab members. I am forever grateful to the now

departed members of the seclab who were here when I started my Masters. You took

me under your wing, taught me, and created and infused within me the seclab culture.

iv

I would like to thank: Wil, Vika, Sean, Nick, Brett, Lorenzo, Fede, Martin, Max, and

especially Marco, for his wisdom and guidance.

The only way I was able to stay sane during my PhD was because of my fellow sec-

lab members. We forged a bond during those 3am deadlines, iCTF all-nighters, walks

to Freebirds!, costume parties, and soccer games—a bond which makes us brothers-in-

arms. In no particular order, thanks to: Gianluca, Alexandros, Luca, Antonio, Gorkem,

Ali, Patrick, Kevin, Jacopo, Dhilung, Kyle, Yan, Fish, Bob, Ludo, Manuel, Gregoire,

and Bryce.

A very special thanks to my Mom, Dad, and brother for their love, support, and

constant ribbing and teasing.

And finally, thank you Becca, for being my rock.

v

Curriculum Vitæ

Adam Loe Doupé

Education

2010 – 2014 PhD in Computer Science

University of California, Santa Barbara

2008 – 2009 Master’s Degree in Computer Science

University of California, Santa Barbara

2004 – 2008 Bachelor’s Degree in Computer Science with Honors

University of California, Santa Barbara

Research Experience

2010 – 2014 Research Assistant, University of California, Santa Barbara

2013 Summer Visiting PhD Student, Stanford University

Advisor: John C. Mitchell

2012 Summer Research Intern, Microsoft Research

Advisor: Weidong Cui

2009 Research Assistant, University of California, Santa Barbara

vi

Industry Experience

2009 – 2010 Software Developer Engineer, Microsoft

2008 Summer Software Developer Engineer Intern, Microsoft

2007 – 2008 Software Developer, AT&T Government Solutions

2005 – 2010 Founder/Developer, WootWatchers.com

2004 – 2005 Mobile Product Manager, VCEL, Inc.

Teaching Experience

October 2013 Taught class lecture for undergraduate security class on web secu-

rity, and created web application vulnerability homework by request

of Richard Kemmerer

Fall 2013 Co-created and Co-taught “Recent Trends in Computing Research,” a

2-unit seminar graduate class

November 2012 Created web application vulnerability homework and designed in-class

lecture for undergraduate security class by request of Richard Kem-

merer

April 2012 Created and ran a three hour hands-on workshop at UC Santa Barbara

by request of the Web Standard Group entitled “Into the Mind of the

Hacker”

October 2011 Taught class on crypto analysis for undergraduate security class by

request of Richard Kemmerer

vii

Fall 2010 Teaching Assistant for CS 279 (Advanced Topics in Computer Secu-

rity), won Outstanding Teaching Assistant Award from the Computer

Science Department

Fall 2008 Teaching Assistant for CS 177 (Introduction to Computer Security),

won Outstanding Teaching Assistant Award from the Computer Sci-

ence Department

viii

Abstract

Advanced Automated Web Application Vulnerability

Analysis

Adam Loe Doupé

Web applications are an integral part of our lives and culture. We use web applica-

tions to manage our bank accounts, interact with friends, and file our taxes. A single

vulnerability in one of these web applications could allow a malicious hacker to steal

your money, to impersonate you on Facebook, or to access sensitive information, such

as tax returns. It is vital that we develop new approaches to discover and fix these

vulnerabilities before the cybercriminals exploit them.

In this dissertation, I will present my research on securing the web against current

threats and future threats. First, I will discuss my work on improving black-box vulner-

ability scanners, which are tools that can automatically discover vulnerabilities in web

applications. Then, I will describe a new type of web application vulnerability: Exe-

cution After Redirect, or EAR, and an approach to automatically detect EARs in web

applications. Finally, I will present deDacota, a first step in the direction of making

web applications secure by construction.

ix

Contents

Acknowledgements iv

Curriculum Vitæ vi

Abstract ix

List of Figures xiii

List of Tables xiv

Listings xv

1 Introduction 1

1.1 History of Web Applications . 2

1.2 Web Application Vulnerabilities . 6

1.2.1 Injection Vulnerabilities . 7

1.2.2 Logic Flaws . 14

1.3 Securing Web Applications . 15

1.3.1 Anomaly Detection . 16

1.3.2 Vulnerability Analysis Tools 17

1.4 Securing the Web . 21

2 Related Work 24

2.1 Evaluating Black-Box Web Vulnerability Scanners 24

2.2 Black-Box Vulnerability Scanners 26

2.3 Automated Discovery of Logic Flaws 31

2.4 Cross-Site Scripting Defense . 34

2.4.1 Server-Side Methods . 34

x

2.4.2 Client-Side Methods . 36

3 An Analysis of Black-Box Web Application Vulnerability Scanners 38

3.1 Background . 41

3.1.1 Web Application Vulnerabilities 42

3.1.2 Web Application Scanners 43

3.2 The WackoPicko Web Site . 44

3.2.1 Design . 45

3.2.2 Vulnerabilities . 47

3.2.3 Crawling Challenges . 52

3.3 Experimental Evaluation . 54

3.3.1 Setup . 55

3.3.2 Detection Results . 56

3.3.3 Attack and Analysis Capabilities 66

3.3.4 Crawling Capabilities . 69

3.4 Lessons Learned . 76

3.5 Conclusions . 77

4 A State-Aware Black-Box Web Vulnerability Scanner 81

4.1 Motivation . 84

4.2 State-Aware Crawling . 88

4.2.1 Web Applications . 88

4.2.2 Inferring the State Machine 91

4.3 Technical Details . 95

4.3.1 Clustering Similar Pages . 95

4.3.2 Determine the State-Changing Request 100

4.3.3 Collapsing Similar States 101

4.3.4 Navigating . 103

4.4 State-Aware Fuzzing . 105

4.5 Evaluation . 107

4.5.1 Experiments . 109

4.5.2 Results . 115

4.6 Limitations . 119

4.7 Conclusion . 119

5 Discovering and Mitigating Execution After Redirect Vulnerabilities 122

5.1 Overview of EARs . 126

5.1.1 EAR History . 128

5.1.2 EARs as Logic Flaws . 129

5.1.3 Types of EARs . 130

xi

5.1.4 Framework Analysis . 132

5.1.5 EAR Security Challenge . 140

5.2 EAR Detection . 142

5.2.1 Detection Algorithm . 143

5.2.2 Limitations . 150

5.3 Results . 152

5.3.1 Detection Effectiveness . 153

5.3.2 Performance . 156

5.4 Prevention . 157

5.5 Conclusions . 159

6 Toward Preventing Server-Side XSS 160

6.1 Background . 165

6.1.1 Cross-Site Scripting . 166

6.1.2 Code and Data Separation 167

6.1.3 Content Security Policy . 167

6.2 Threat Model . 169

6.3 Design . 170

6.3.1 Example . 171

6.3.2 Approximating HTML Output 173

6.3.3 Extracting Inline JavaScript 176

6.3.4 Application Rewriting . 177

6.3.5 Dynamic Inline JavaScript 180

6.3.6 Generality . 182

6.4 Implementation . 183

6.5 Evaluation . 187

6.5.1 Applications . 187

6.5.2 Security . 190

6.5.3 Functional Correctness . 191

6.5.4 Performance . 192

6.5.5 Discussion . 193

6.6 Limitations . 195

6.7 Conclusion . 197

7 Conclusions 198

Bibliography 200

xii

List of Figures

1.1 Example interaction between a web browser and a web server. 3

1.2 Sample web application with server-side code and a database. 5

3.1 Detection performance of the scanners. 57

3.2 Scanner running times. 58

3.3 Dominates graph. 63

3.4 WIVET results. 72

4.1 Navigation graph of a simple web application. 85

4.2 State machine of a simple web application. 85

4.3 The state machine of a simple e-commerce application. 90

4.4 A page’s link vectors stored in a prefix tree. 96

4.5 Abstract Page Tree example. 97

4.6 Graph of scanner code coverage results. 117

4.7 State machine that state-aware-scanner inferred for WackoPicko v2. . 121

5.1 The logical flow of the white-box tool. 143

5.2 Control Flow Graph for the code shown in Listing 5.4. 147

6.1 Approximation graph for the code in Listing 6.1 and Listing 6.2. . . . 174

6.2 Approximation graph with branches and a loop. 175

6.3 ASP.NET control parent-child relationship example. 185

xiii

List of Tables

3.1 Characteristics of the scanners evaluated. 54

3.2 Detection results of the scanners. 56

3.3 False positives. 60

3.4 Vulnerability scores. 64

3.5 Final ranking. 65

3.6 Number of accesses to vulnerable web pages. 79

3.7 Account creation. 80

4.1 Applications used to evaluate the scanners. 107

4.2 Black-box web vulnerability scanners that we compared. 112

4.3 Code coverage results of the scanners. 116

5.1 Results of running white-box detector. 151

5.2 Results of manually inspecting all vulnerable EARs. 153

6.1 ASP.NET Web Form applications used in the evaluation. 187

6.2 Results of the DEDACOTA evaluation. 192

6.3 Performance measurements after running DEDACOTA. 192

xiv

Listings

1.1 Example of an SQL injection vulnerability. 8

1.2 Example of a XSS vulnerability. 11

4.1 Psuedocode for fuzzing state-changing request. 105

5.1 Example of an Execution After Redirect (EAR) vulnerability. 127

5.2 Example of a complex Execution After Redirect vulnerability. 129

5.3 Example of an information leakage EAR vulnerability. 131

5.4 Example of a potential false positive. 146

5.5 True positive EAR vulnerability example. 154

6.1 Example of a simple ASP.NET Web Form page. 171

6.2 The compiled C# output of Listing 6.1. 172

6.3 The result of the rewriting algorithm applied to Listing 6.2. 179

xv

Chapter 1

Introduction

Web applications are a fundamental part of our lives and culture. We use web ap-

plications in almost every facet of society: socializing, banking, health care, taxes,

education, news, and entertainment, to name a few. These web applications are always

available from anywhere with an Internet connection, and they enable us to communi-

cate and collaborate at a speed that was unthinkable just a few decades ago.

As more and more of our lives and data move to web applications, hackers have

shifted their focus to web applications. In 2011, hackers stole 1 million usernames and

passwords from Sony [17]. In 2007, hackers stole 45 million customer credit cards from

TJ Maxx [76]. In 2009, hackers stole 100 million customer credit cards from Heartland

Payment Systems [1]. In 2012, hackers stole 24,000 Bitcoins1 from BitFloor, a major

Bitcoin exchange [84]. What all of these instances have in common is that hackers

1These Bitcoins are worth about $10 million at this time of writing.

1

Chapter 1. Introduction

exploited vulnerabilities in a web application to steal either usernames and passwords,

credit cards, or Bitcoins.

Those same properties that make web applications so attractive to users also attract

hackers. A web application never closes, so they are always available for hackers.

Web applications also house a vast treasure-trove of data, which hackers can use for

monetary gain. Finally, as we will explore in the next section, web applications are

a complex hodgepodge of various technologies. This complexity, combined with the

intense time-to-market pressure of companies and people that build web applications,

is a breeding ground for bugs and vulnerabilities.

The situation is dire. We must focus on new ways to secure web applications from

attack. We must develop new tools in order to find the vulnerabilities before a hacker

does. We must, because web applications and the data they store are too important.

1.1 History of Web Applications

The World Wide Web was created by Sir. Tim Berners-Lee in 1989 as a means of

sharing information for the CERN research organization. What began as a way to share

simple hyper-linked textual documents over the nascent Internet quickly exploded in

popularity over the proceeding years.

2

Chapter 1. Introduction

(1)

(2)

Figure 1.1: Example interaction between a web browser and a web server. In (1), the

web browser makes an HTTP request to the webserver, and in (2) the web server sends

the web browser an HTTP response containing the HTML of the web page.

The core of the web has remained relatively the same throughout the years: a web

browser (operated by a user) connects to a web server using the Hypertext Transfer

Protocol (HTTP) [49]. The web server then sends back a response, typically in the form

of a HyperText Markup Language (HTML) page [16]. The web browser then parses

the raw HTML page to create a graphical web page that is displayed to the user. The

fundamental underlying principle, and the definition of HyperText, is that an HTML

page contains links to other HTML pages.

Figure 1.1 shows a graphical representation of the interaction between the web

browser and the web server. In (1), the web browser will make an HTTP request to

the web server, to request a resource. Then, the web server will respond, as in (2), with

an HTTP response which contains the HTML of the requested web page.

The beginning of the web was envisioned as a set of documents with links pointing

to other documents2. In other words, the web was mostly a set of read-only documents

(from the perspective of the user with the web browser). This is where the term web

2This is where the name web comes from, as each link forms a strand in the web.

3

Chapter 1. Introduction

site comes from: a web site is typically thought of as a collection of documents that

exist under the same domain name.

As the web evolved, web sites started to shift from static, read-only documents.

Developers realized that the HTML response returned to the client could be dynamic—

that is, the content of the HTML response could vary programmatically. This shift in

thinking caused web sites to transition to web applications which emulated features of

traditional desktop applications. Web applications enabled scenarios that caused the

web’s popularity to increase: e-commerce, news sites, and web-based email clients. It

is hard to overstate the impact that web applications had on the uptake of the web.

Now, with web applications, the architecture of the web changed. When the web

browser makes an HTTP request to the server, instead of returning a static HTML

response, the web server typically will invoke server-side code. This server-side code

is responsible for returning a response, typically HTML, to the browser. The server-

side code can use any number of inputs to determine the response, but typically the

server-side code reads the parameters sent in the browser’s HTTP request, consults an

SQL database, and returns an HTML response.

Figure 1.2 shows an example web application with a back-end SQL database. Now,

when the web browser sends an HTTP request to the web application, as in (1), the web

application’s server-side code will start to execute. Then, as (2) shows, the server-side

code can make one or more request to the SQL database, when executes the queries

4

Chapter 1. Introduction

(1) (2)

(3)(4)

Figure 1.2: Sample web application with servers-side code and a back-end database. In

(1), the web browser makes an HTTP request to the web application. Then the server-

side code can issue one or more SQL queries to the back-end SQL database, shown

as (2). The SQL server returns the data in (3), which the web application will use to

generate an HTTP response with HTML, as in (4).

and returns the data to the server-side code in (3). Finally, the web application finishes

processing the request and sends an HTTP response with an HTML web page to the

web browser in (4).

The HTTP mechanism is, by design, stateless: Each HTTP request that the web

server receives is independent of any other request. It is difficult to build an interactive

application on top of a stateless protocol, thus a standard was developed to add state to

the HTTP protocol [87]. This standard added the cookie mechanism to the HTTP layer.

In this way, a web server can ask the web browser to set a cookie, then, in subsequent

requests, the web browser will include the cookie. Therefore, a web server or web

application can link the requests into a session based on the common cookie and thus

develop state-aware web applications.

Even after the advent of web applications, the server-side code would return an

HTML page that was statically rendered and displayed to the user. To change to content

on the page or otherwise interact with the web application, the browser must perform

5

Chapter 1. Introduction

another HTTP request and receive a response based on a link the user clicked or a form

the user submitted. In 1997, Brendan Eich, a programmer at Netscape, created a client-

side scripting language called JavaScript [46]. The user’s web browser implemented an

interpreter for this scripting language so that it could manipulate the web page. Now,

with JavaScript, web developers could programmatically alter the content on the web

page without making a request to the web server. The final linchpin which enabled

web applications to truly rival traditional applications was the creation and standard-

ization of the XMLHttpRequest JavaScript API [137]. This API allowed the client-side

JavaScript code to make asynchronous requests to the web application and then update

the content of the web page according to the response from the web application. Com-

bined together, these web application development technologies came to be known as

AJAX [56], which rivaled traditional desktop applications in functionality.

This architecture of a web application is what we will use throughout this chapter to

discuss the security aspects of web applications. In this dissertation, other details and

complexities of web applications will be explained in the chapter where it is needed.

1.2 Web Application Vulnerabilities

The security properties of a web application are similar to the security of any other

software system: confidentially of the data, integrity of the data, and availability of the

6

Chapter 1. Introduction

application. In this dissertation, we will focus on attacks that compromise the confi-

dentially or integrity of the web application’s data.

1.2.1 Injection Vulnerabilities

This class of vulnerabilities occur when an attacker is able to control or influence the

value of parameters that are used as part of an outside3 query, command, or language.

If the attacker can manipulate and change the semantics of the query, command, or

language, and this manipulation compromises the security of the application, then that

is an injection vulnerability.

There are many types of injection vulnerabilities in web applications, and the types

depend on the query, command, or language that is being injected. These include SQL

queries, HTML responses, OS commands, email headers, HTTP headers, and many

more. Next we will focus on two of the most serious and prevalent classes of injection

vulnerabilities in web applications: SQL injection and Cross-Site Scripting (XSS).

SQL Injection

SQL injection vulnerabilities, while declining in the number reported compared to

XSS vulnerabilities, are still numerous and are incredibly critical when they occur.

3Outside from the perspective of the web application’s server-side language.

7

Chapter 1. Introduction

1 $name = $_GET['name'];

2 $q = "select * from users where name = '" . $name . "';";

3 $result = mysql_query($q);

Listing 1.1: Example of an SQL injection vulnerability in a PHP web application. The

attacker-controlled $name parameter is used unsanitized in the SQL query created on

Line 2 and issued on Line 3.

The root cause of SQL injection vulnerabilities is that the server-side code of the

web application, to issue an SQL query to the SQL database, concatenates strings to-

gether. This format allows the queries to be parameterized, and therefore the server-side

code can be more general.

The code in Listing 1.1 shows a sample PHP web application that contains an SQL

injection vulnerability. In Line 1 of this sample, the variable $name is set based on the

value of the query parameter called name. The $name variable is used in Line 2 to

construct an SQL query to look up the given user by name in the SQL table users.

The web application issues the query on Line 3.

The problem is that, according to the server-side language, the resulting query is

simply a string, whereas when that string is passed to the SQL server, the SQL server

parses the string into a SQL query. Therefore, what the server-side code treats as a

simple string is a complex language with syntax and semantics.

In Listing 1.1, the vulnerability comes from the fact that the query parameter name

comes from the user and therefore may be modified by an attacker. As seen in the

example, the $name variable is used in the SQL query to select based on the SQL

8

Chapter 1. Introduction

name column. In order to do this, the programmer constrains the value to be in be-

tween matching ' which is SQL query syntax for delimiting data. Therefore, for the

attacker to alter the semantics of the query, the attacker need only input something like

the following: 'or 1=1; #. This input would cause the SQL query that the web

application issues to the database to be the following:

select * from users where name = ''or 1=1; #';

The # is an SQL comment which means that everything after that in the query is

ignored. Now the attacker has been able to alter the semantics of the SQL query, in this

case by adding another SQL clause (or 1=1) that was not in the original statement.

Thus, in order for an attacker to not alter the semantics of the SQL query, a web

developer must be careful to properly sanitize all potentially attacker-controlled input.

Here, sanitize means to transform the input from the user to a form that renders it

neutral in the target language. In the case of SQL, this typically means converting any

' (which are used by an attacker to escape out of an SQL query) to the inert \'.

With an SQL injection vulnerability, an attacker can violate both the confidentially

and integrity of the application’s data. An attacker can insert arbitrary data into the

database, potentially adding a new admin user to the web application. Also, an attacker

can exfiltrate any data that the database user can access (typically all data that the web

application can access). Finally, the attacker can also delete all of the web application’s

9

Chapter 1. Introduction

data. All of these consequences are the result of a single SQL injection vulnerability,

and that is why SQL injection vulnerabilities can critically compromise a web applica-

tion’s security.

To prevent SQL injections with sanitization, a developer must be extremely careful

that no user-supplied data is used in an SQL statement, including any paths that the data

could have taken through the web application. In practice, this is (understandably) dif-

ficult for developers to always accomplish. Therefore, developers should use prepared

statements, which is a way to tell the database the structure of an SQL query before

the data is given. In this way, the database already knows the structure of the SQL

query, and therefore there is no way for an attacker to alter the structure and semantics

of the query. Almost every server-side language or framework has support for prepared

statements. Unfortunately, even with widespread support for prepared statements, SQL

injections are still frequently found in web applications.

Cross-Site Scripting

Cross-Site Scripting (XSS) vulnerabilities are similar in spirit to SQL injection vul-

nerabilities. Instead of an injection into a SQL query, XSS vulnerabilities are injections

into the HTML output that the web application generates. XSS vulnerabilities are fre-

quently in the top three of reported vulnerabilities in all software systems.

10

Chapter 1. Introduction

1 $name = $_GET['name'];

2 echo "Hello " . $name . "";

Listing 1.2: Example of a XSS vulnerability in a PHP web application. The attacker-

controlled $name parameter is used unsanitized in the HTML output on Line 2.

The root cause of XSS vulnerabilities is that the server-side code of a web applica-

tion, in order to create the web application’s HTML response, essentially concatenates

strings together.

Listing 1.2 shows an example PHP web application that has an XSS vulnerability.

In Line 1, the variable $name is retrieved from the query parameter name. Then,

$name is used in Line 2 as an argument to PHP’s echo function, which sends its

string argument to the HTTP response. The goal of this code is to output the user’s

name in bold. This is accomplished in HTML by wrapping the user’s name in a bold

tag ().

If an attacker is able to control the HTML output of the web application, as the

$name parameter in Listing 1.2, then the attacker can trick the user’s web browser into

executing the attacker’s JavaScript. This can be accomplished in a variety of ways, one

example would be inputting the following for the name query parameter:

<script>alert(’xss’);</script>

Matching <script> HTML tags is the way for the web application to tell the

user’s browser to execute JavaScript.

11

Chapter 1. Introduction

The fundamental building block of JavaScript security in the web browser is the

Same Origin Policy. In essence, this security policy means that only JavaScript that

comes from the same origin4 can interact. In practice, what this means is that JavaScript

running on a web browser from hacker.com cannot interact with or affect JavaScript

running on the same web browser from example.com.

The name Cross-Site Scripting is derived from the fact that XSS circumvents the

browser’s Same Origin Policy. By using an XSS vulnerability, an attacker is able to

trick a user’s browser to execute JavaScript code of their choosing in the web appli-

cation’s origin. This is because, from the browser’s perspective, the JavaScript came

from the web application, so the browser happily executes the attacker’s JavaScript

along with the web application’s JavaScript.

With an XSS vulnerability, an attacker can compromise a web application signifi-

cantly. A popular XSS exploitation technique is to steal the web application’s cookies

and send them to the attacker. Typically the web application’s cookies are used to au-

thenticate and keep state with the web application, which could allow the attacker to

impersonate the user.

By executing JavaScript in the same origin as the web application, the attacker’s

JavaScript has total control over the graphical appearance of the web page. What this

means is that the attacker can completely alter the look of the web page, and could, for

4Here, we omit the definition of the same origin. We will define it later in the dissertation when

necessary.

12

Chapter 1. Introduction

instance, force the page to resemble the web application’s login form. However, once

the user puts their information into the form, the attacker’s JavaScript could steal that

information. In this way, the attacker is able to phish the user’s credentials, except in

this instance the user is on the proper domain name for the web application.

Another insidious thing that an attacker’s JavaScript can do if it executes in the

user’s browser is interact with the web application on behalf of the user5. In practice,

what this means is that the attacker’s JavaScript can interact with the web application,

and the web application has no way of knowing that the requests did not come from the

user. Imagine an attacker’s JavaScript sending emails on a user’s behalf or initiating a

bank transfer.

XSS vulnerabilities can be fixed by proper sanitizaiton at all program points in

the web application that output HTML. This sanitization process typically will convert

entities that are significant in parsing HTML to their display equivalent. For instance,

the HTML < character is transformed to its HTML entity equivalent >, which

means to display a < character on the resulting web page, rather than starting an HTML

tag.

There are a number of practical difficulties that make properly sanitizing output

for XSS vulnerabilities particularly challenging (especially when compared to SQL

injection vulnerabilities). One difficulty is that, as shown by Saxena, Molnar, and

5This defeats any CSRF protection that the web application has enabled, as the attacker’s JavaScript

can read the web application’s CSRF tokens.

13

Chapter 1. Introduction

Livshits [125], there are numerous types of sanitization for XSS vulnerabilities, and

which type of sanitization to use depends on where the output is used in the resulting

HTML page. This means that the developer must reason not only about all program

paths that a variable may take to get to a specific program point (to see if an attacker

can influence its value), but also about all the different places in the HTML output

where the variable is used. The complex nature of XSS vulnerabilities contribute to the

reason that it is still the most frequent web application vulnerability.

Unfortunately XSS vulnerabilities have no easy, widely supported fix, as prepared

statements are to SQL injection vulnerabilities. However, in Chapter 6 we will look at

an approach to fundamentally solve a large class of XSS vulnerabilities.

1.2.2 Logic Flaws

Logic flaws are a class of vulnerabilities that occur when the implemented logic

of the web application does not match with the developer’s intended logic of the web

application. One popular example would be, on an ecommerce application, if a user

is able to submit a coupon multiple times, until the price of the item is zero. Another

example might be a financial services web application which accidentally sends confi-

dential financial reports to unauthorized users.

An injection vulnerability can affect any web application, and the fix of the vulner-

ability will be the same, regardless of the underlying web application. In contrast, logic

14

Chapter 1. Introduction

flaws are specific and unique to the web application. Identical behavior that appears in

two web applications may be a logic flaw in one but a security vulnerability in the other.

Consider the behavior of an unauthenticated user altering the content of a web page. In

most applications, this would represent a vulnerability, however it is the core mechanic

and defining feature of a wiki, such as Wikipedia. The distinguishing feature of logic

flaw vulnerabilities is that the web application code is functioning correctly—that is, an

attacker is not able to alter how the code executes or execute code of her choosing, how-

ever the behavior that the code executes violates the developer’s security model of the

application. Therefore, these vulnerabilities are incredibly difficult to detect in an au-

tomated fashion, as the automated tool must reverse engineer the developer’s intended

security model.

In Chapter 5, we will describe a novel class of logic flaw vulnerabilities called

Execution After Redirect.

1.3 Securing Web Applications

Given their rise in popularity, ensuring that web applications are secure is critical.

Security flaws in a web application can allow an attacker unprecedented access to secret

and sensitive data.

15

Chapter 1. Introduction

There are numerous approaches to secure web applications, depending on where

the defense is put into place. One approach is to detect attacks as they happen and

block the attack traffic. Another approach is to construct the web application in a way

such that it is not vulnerable to entire classes of security vulnerabilities. Finally, and the

approach taken in the majority of this dissertation, is automated tools to automatically

find vulnerabilities in web applications.

1.3.1 Anomaly Detection

One way to secure web applications is to have tools and approaches that look for

attacks against web applications in the inbound web traffic [118]. There are many ap-

proaches in this area, but most of them involve first creating a model of the normal

behavior of the web application. Then, after this model is created, a monitoring/detec-

tion phase starts which analyzes inbound web application traffic looking for anomalous

web requests which signify an attack. Depending on the anomaly detection system, the

request can be blocked or prevented at that time.

Anomaly detection systems are good for preventing unknown exploits against the

web application. However, the effectiveness of the anomaly detection depends on the

creation of the web application model and the presence of extensive attack-free traffic.

In practice, it is difficult to automatically create extensive attack-free traffic.

16

Chapter 1. Introduction

Modern web application can use anomaly detection systems in production environ-

ments as a defense-in-depth approach.

1.3.2 Vulnerability Analysis Tools

Vulnerability analysis is the art of finding vulnerabilities in software. The idea is to

find vulnerabilities either before an application is deployed or before an attacker is able

to find the vulnerability.

Manual vulnerability analysis is when a team of humans manually analyze an ap-

plication for vulnerabilities. These manual vulnerability analyses, frequently called

pentesting, employ a team of experts to find vulnerabilities in a software system. The

downside is that an expert’s time is costly, and therefore, due to the cost, a company

will very infrequently do an external pentest of its web applications.

Vulnerability analysis tools are automated approaches to find vulnerabilities in soft-

ware. The goal of this type of software is to find all possible vulnerabilities in an ap-

plication. The core idea is to develop software that can encapsulate a human security

expert’s knowledge.

Because vulnerability analysis tools are automated, they can be used against a va-

riety of applications. Furthermore, they are significantly less expensive than hiring

a team of human experts, so they can be used much more frequently throughout the

software development process.

17

Chapter 1. Introduction

Vulnerability analysis tools can be categorized based on what information of the

web application they use. In the following sections we will describe the difference

between white-box, black-box, and grey-box vulnerability analysis tools.

White-Box

A white-box vulnerability analysis tool looks at the source code of the web appli-

cation to find vulnerabilities. By analyzing the source code of the web application,

a white-box tool can see all potential program paths throughout the application. This

enables a white-box tool to potentially find vulnerabilities along all program paths. Typ-

ically approaches leverage ideas and techniques from the program analysis and static

analysis communities to find vulnerabilities.

The biggest strength of white-box tools is that they are able to see all possible pro-

gram paths through the application. However, as precisely identifying all vulnerabilities

in an application via static analysis is equivalent to the halting problem, trade-offs must

be made in order to create useful tools. The trade-off that is often made in white-box

tools is one of being sound rather than complete. What this means is that a white-box

tool will report vulnerabilities that are not actual vulnerabilities. This is usually be-

cause the static analysis will over-approximate the program paths that the application

can take. Thus, there will be vulnerabilities reported that cannot occur in practice.

18

Chapter 1. Introduction

The downside of white-box tools is that they are tied to the specific language or

framework. A white-box vulnerability analysis tool written for PHP will not work for

Ruby on Rails without significant engineering work. These tools are tightly coupled to

not only language features, but also framework features.

Black-Box

In contrast to white-box tools, black-box vulnerability analysis tools assume no

knowledge of the source-code of the web application. Instead of using the source code,

black-box tools interact with the web application being tested just as a user with a web

browser would. Specifically, this means that the black-box tools issue HTTP requests

to the web application and receive HTTP responses containing HTML. These HTML

pages tell the black-box tool how to generate new HTTP requests to the application.

Black-box tools first will crawl the web application looking for all possible injection

vectors into the web application. An injection vector is any way that an attacker can

feed input into the web application. In practice, web application injection vectors are:

URL parameters, HTML form parameters, HTTP cookies, HTTP headers, URL path,

and so on.

Once the black-box tool has enumerated all possible injection vectors in the appli-

cation, the next step is to give the web application input which is intended to trigger or

expose a vulnerability in the web application. This process is typically called fuzzing.

19

Chapter 1. Introduction

The specifics of choosing which injection vectors to fuzz and when are specific to each

black-box tool.

Finally, the black-box tool will analyze the HTML and HTTP response to the

fuzzing attempts in order to tell if the attempt was successful. If it was, the black-box

tool will report it as a vulnerability.

There are two major benefits of black-box tools as opposed to white-box tools.

The first is that black-box tools are general and can find vulnerabilities in any web

application, regardless of what language the server-side code is written in. In this way,

black-box tools emulate an external hacker who has no access to the source code of the

application. Therefore, black-box tools are applicable to a much larger number of web

applications.

The second major benefit is that black-box tools have significantly lower false posi-

tives6 than white-box tools. This is because the fuzzing attempt actually tries to trigger

the vulnerability, and, for most web vulnerabilities, a successful exploitation will be

evident in the resulting HTML page. Ultimately, lower false positives causes the de-

velopers who run these tools against their own web applications to trust the output of a

black-box tool over a white-box tool.

The drawback of a black-box tool is that it is not guaranteed to find all vulnerabil-

ities in your web application. This limitation is because a black-box tool can only find

6A false positive is a vulnerability that the tool reports which is not actually a vulnerability.

20

Chapter 1. Introduction

vulnerabilities along program paths that it executes, whereas a white-box tool can see

all program paths through an application.

Grey-Box

As the name suggests, grey-box tools are a combination of white-box techniques

and black-box techniques. The main idea is to use white-box static analysis techniques

to generate possible vulnerabilities. Then, there is a confirmation step where the tool

will actually try to exploit the vulnerability. Only if this step is successful will the tool

report the vulnerability.

Grey-box tools inherit the benefits of white-box tools: The ability to find vulner-

abilities in all program paths along with the low false positive rate associated with

black-box tools (as the vulnerabilities are verified by the black-box techniques). How-

ever, grey-box tools also inherit the drawbacks of white-box tools: Applicability to a

single web application language or framework. Therefore, these types of tools are not

as popular as white-box and black-box tools.

1.4 Securing the Web

Given the empowering nature of web applications, it is clear that securing web applica-

tions is important. Specifically, we must focus on the needs of the users: making sure

21

Chapter 1. Introduction

that their data is safe, and that they are safe while browsing the web. To accomplish

this, I believe that we must make the necessary strides to create automated tools that are

able to automatically find security vulnerabilities. These tools can be used by develop-

ers with no security expertise, thus putting developers on a level playing field with the

attackers.

In this dissertation, I make the following contributions to securing web applications

from attack:

• I methodically analyze existing black-box web application vulnerability scan-

ners. We develop a known-vulnerable web application, then evaluate several real-

world black-box web application vulnerability scanners to identify their strengths

and weaknesses.

• Then, using the previously developed work as a guide, I aim to solve the biggest

problem restricting modern black-box web application vulnerability scanners:

They do not understand that they are analyzing a web application with state. I

develop an approach to automatically reverse-engineer the state machine of a web

application solely through black-box interactions. Incorporating this knowledge

into a black-box web application vulnerability scanner enables the scanner to test

significantly more of the web application.

22

Chapter 1. Introduction

• I identify and study a novel class of web application vulnerabilities, called Exe-

cution After Redirect, or EARs. These logic flaw vulnerabilities can affect web

applications written in a number of languages or frameworks. In addition to

studying this class of vulnerabilities, we developed a white-box static analysis

tool to automatically identify EARs in Ruby on Rails web applications. By ap-

plying this tool to a large corpus of real-world open-source web application, we

found many previously unknown vulnerabilities.

• Finally, I propose a new approach to fundamentally solve Cross-Site Scripting

vulnerabilities. By using the fundamental security principles of Code and Data

separation, we can view XSS vulnerabilities as a problem of Code and Data sep-

aration. New applications can be designed with Code and Data separation in

mind, however it is difficult to separate Code and Data manually. To prevent

XSS vulnerabilities in existing web applications, I created a tool to automatically

perform Code and Data separation for legacy web applications. After applying

this tool, the web applications are fundamentally secure from server-side XSS

vulnerabilities.

23

Chapter 2

Related Work

Automated web application vulnerability analysis tools are an area of research that

has received considerable study. In this chapter, we will discuss works related to differ-

ent areas of web application vulnerability scanners: how black-box web vulnerability

scanners are evaluated, the history of black-box and white-box tools, and finally the

various proposed defenses for Cross-Site Scripting vulnerabilities.

2.1 Evaluating Black-Box Web Vulnerability Scanners

Our work on evaluating black-box vulnerability scanners in Chapter 3 is related to

two main areas of research: the design of web applications for assessing vulnerability

analysis tools and the evaluation of web scanners.

Designing test web applications. Vulnerable test applications are required to assess

web vulnerability scanners. Unfortunately, no standard test suite is currently avail-

24

Chapter 2. Related Work

able or accepted by the industry and research community. HacmeBank [53] and Web-

Goat [105] are two well-known, publicly-available, vulnerable web applications, but

their design is focused more on teaching web application security rather than testing

automated scanners.

SiteGenerator [104] is a tool to generate sites with certain characteristics (e.g.,

classes of vulnerabilities) according to its input configuration. While SiteGenerator is

useful to automatically produce different vulnerable sites, we found it easier to manu-

ally introduce in WackoPicko the vulnerabilities with the characteristics that we wished

to test.

Evaluating web vulnerability scanners. There exists a growing body of literature

on the evaluation of web vulnerability scanners. For example, Suto compared three

scanners against three different applications and used code coverage, among other met-

rics, as a measure of the effectiveness of each scanner [134]. In a follow-up study,

Suto [135] assessed seven scanners and compared their detection capabilities and the

time required to run them. Wiegenstein et al. ran five unnamed scanners against a

custom benchmark [144]. Unfortunately, the authors do not discuss in detail the rea-

sons for detections or spidering failures. In their survey of web security assessment

tools, Curphey and Araujo reported that black-box scanners perform poorly [39]. Peine

examined in depth the functionality and user interfaces of seven scanners (three com-

mercial) that were run against WebGoat and one real-world application [111]. Kals et

25

Chapter 2. Related Work

al. developed a new web vulnerability scanner and tested it on approximately 25,000

live web pages [82]. Because no ground truth is available for these sites, the authors did

not discuss false negative rate or failures of their tool. AnantaSec released an evaluation

of three scanners against 13 real-world applications, three web applications provided

by the scanner vendors, and a series of JavaScript tests [5]. While this experiment as-

sessed a large number of real-world applications, only a limited number of scanners are

tested and no explanation is given for the results. In addition, Vieira et al. tested four

web vulnerability scanners on 300 web services [138]. They also report high rates of

false positives and false negatives.

2.2 Black-Box Vulnerability Scanners

Automatic or semi-automatic web application vulnerability scanning has been a hot

topic in research for many years because of its relevance and its complexity. In Chap-

ter 4 we will discuss the creation of a new black-box vulnerability scanner technique.

Here, we review the relevant literature.

Huang et al. developed a tool (WAVES) for assessing web application security with

which we share many points [71]. Similarly to our work, they have a scanner for finding

the entry points in the web application by mimicking the behavior of a web browser.

They employ a learning mechanism to sensibly fill web form fields and allow deep

26

Chapter 2. Related Work

crawling of pages behind forms. Attempts to discover vulnerabilities are carried out

by submitting the same form multiple times with valid, invalid, and faulty inputs, and

comparing the result pages. Differently from WAVES, we are using the knowledge

gathered by the understanding of the web application’s state to help the fuzzer detect

the effect of a given input. Moreover, black-box vulnerability scanner aims not only at

finding relevant entry-points, but rather at building a complete state-aware navigational

map of the web application.

A number of tools have been developed to try to automatically discover vulnerabil-

ities in web applications, produced as academic prototypes [11,48,61,72,81,82,89], as

open-source projects [26, 33, 117], or as commercial products [2, 70, 73, 113].

Multiple projects [14, 135, 138], as well as Chapter 3 tackled the task of evaluat-

ing the effectiveness of popular black-box scanners (in some cases also called point-

and-shoot scanners). The common theme in their results is a relevant discrepancy in

vulnerabilities found across scanners, along with low accuracy. Authors of these eval-

uations acknowledge the difficulties and challenges of the task [59, 138]. In particular,

we highlighted how more deep crawling and reverse engineering capabilities of web

applications are needed in black-box scanners, and we also developed the WackoPicko

web application which contains known vulnerabilities described in Chapter 3. Simi-

larly, Bau et al. investigated the presence of room for research in this area, and found

27

Chapter 2. Related Work

improvement is needed, in particular for detecting second-order XSS and SQL injection

attacks [14].

Reverse engineering of web applications has not been widely explored in the liter-

ature, to our knowledge. Some approaches [42] perform static analysis on the code to

create UML diagrams of the application.

Static analysis, in fact, is the technique mostly employed for automatic vulnerability

detection, often combined with dynamic analysis.

Halfond et al. developed a traditional black-box vulnerability scanner, but improved

its results by leveraging a static analysis technique to better identify input vectors [61].

Pixy [81] employed static analysis with taint propagation in order to detect SQL

injection, XSS, and shell command injection, while Saner [11] used sound static anal-

ysis to detect failures in sanitization routines. Saner also takes advantage of a second

phase of dynamic analysis to reduce false positives. Similarly, WebSSARI [72] also em-

ployed static analysis for detecting injection vulnerabilities, but, in addition, it proposed

a technique for runtime instrumentation of the web application through the insertion of

proper sanitization routines.

Felmetsger et al. investigated an approach for detecting logic flaw vulnerabilities by

combining execution traces and symbolic model checking [48]. Similar approaches are

also used for generic bug finding (in fact, vulnerabilities are considered to be a subset

of the general bug category). Csallner et al. employ dynamic traces for bug finding

28

Chapter 2. Related Work

and for dynamic verification of the alerts generated by the static analysis phase [37].

Artzi et al., on the other hand, use symbolic execution and model checking for finding

general bugs in web applications [6].

On a completely separate track, efforts to improve web application security push

developers toward writing secure code in the first place. Security experts are tying to

achieve this goal by either educating the developers [129] or designing frameworks

which either prohibit the use of bad programming practices or enforce some security

constraints in the code. Robertson and Vigna developed a strongly-typed framework

which statically enforces separation between structure and content of a web page, pre-

venting XSS and SQL injection [119]. Also Chong et al. designed their language for

developers to build web applications with strong confidentiality and integrity guaran-

tees, by means of compile-time and run-time checks [34].

Alternatively, consequences of vulnerabilities in web applications can be mitigated

by attempting to prevent the attacks before they reach potentially vulnerable code, such

as, for example, in the already mentioned WebSSARI [72] work. A different approach

for blocking attacks is followed by Scott and Sharp, who developed a language for

specifying a security policy for the web application; a gateway will then enforce these

policies [126].

Another interesting research track deals with the problem of how to explore web

pages behind forms, also called the hidden web [115]. McAllister et al. monitor user

29

Chapter 2. Related Work

interactions with a web application to collect sensible values for HTML form sub-

mission and generate test cases that can be replayed to increase code coverage [95].

Although not targeted to security goals, the work of Raghavan and Garcia-Molina is

relevant for their contribution in classification of different types of dynamic content

and for their novel approach for automatically filling forms by deducing the domain

of form fields [115]. Raghavan and Garcia-Molina carried out further research in this

direction, by reconstructing complex and hierarchical query interfaces exposed by web

applications.

Moreover, Amalfitano et al. started tackling the problem of reverse engineering the

state machine of client-side AJAX code, which will help in finding the web applica-

tion server-side entry points and in better understating complex and hierarchical query

interfaces [4].

Finally, there is the work by Berg et al. in reversing state machines into a Symbolic

Mealy Machine (SMM) model [15]. Their approach for reversing machines cannot be

directly applied to the case of web applications because of the infeasibility of fully

exploring all pages for all the states, even for a small subset of the possible states.

Nevertheless, the model they propose for a SMM is a good starting point to model the

web application’s state.

30

Chapter 2. Related Work

2.3 Automated Discovery of Logic Flaws

In Chapter 5, we discuss and analyze a novel class of web application vulnerabili-

ties, called Execution After Redirect. In this section, we review the relevant literature

applicable to Execution After Redirect vulnerabilities and, more generally, logic flaws.

Isolated instances of Execution After Redirect (EAR) vulnerabilities have been pre-

viously identified. Hofstetter wrote a blog post alerting people to not forget to exit after

a redirect when using the PHP framework CakePHP [66]. This discussion resulted in

a bug being filed with the CakePHP team [27]. This bug was resolved by updating the

CakePHP documentation to indicate the redirect method did not end execution [28].

Felmetsger et al. presented a white-box static analysis tool for J2EE servlets to auto-

matically detect logic flaws in web applications. The tool, Waler, found Execution Af-

ter Redirect vulnerabilities in a web application called Global Internship Management

System (GIMS) [48]. However, neither Felmetsger nor Hofstetter identified EARs as a

systemic flaw among web applications.

Wang et al. manually discovered logic flaws in the interaction of Cashier-as-a-

Service (CaaS) APIs and the web applications that use them [140]. This work is in-

teresting because there is a three-way interaction between the users, the CaaS, and the

web application. In Chapter 5, we consider one specific type of logic flaw across many

applications.

31

Chapter 2. Related Work

Our white-box EAR detection tool uses the Ruby Intermediate Language (RIL)

developed by Furr et al. [54]. RIL was used by An et al. to introduce static typing to

Ruby on Rails [68]. They use the resulting system, DRails, on eleven Rails applications

to statically discover type errors. DRails parses Rails applications by compiling them to

equivalent Ruby code, making implicit Rails conventions explicit. This differs from our

tool, which operates directly on the Rails application’s control flow graph. Moreover,

we are looking for a specific logic flaw, while DRails is looking for type errors.

Chaudhuri and Foster built a symbolic analysis engine on top of DRails, called

Rubyx [31]. They are able to analyze the security properties of Rails applications us-

ing symbolic execution. Rubyx detected XSS, CSRF, session manipulation, and unau-

thorized access in the seven applications tested. Due to the symbolic execution and

verifying of path conditions, false positives are reduced. However, Rubyx requires the

developer to manually specify an analysis script that defines invariants on used objects,

as well as the security requirements of the applications. Our tool, on the other hand, op-

erates on raw, unmodified Rails applications, and does not require any developer input.

This is due to the different focus; we are focusing on one specific type of flaw, while

Rubyx is broader and can verify different types of security violations.

The static analysis EAR detection tool that we develop and describe in Chapter 5 is

also related to numerous white-box tools that have previously been published. Huang

et al. were one of the first to propose a static analysis tool for a server-side script-

32

Chapter 2. Related Work

ing language, specifically PHP. They implemented taint propagation to detect XSS,

SQL injection, and general injection [72]. Livshits and Lam proposed a static analysis

technique for Java web applications that used points-to analysis for improved preci-

sion [92]. Their tool detected 29 instances of SQL injection, XSS, HTTP response

splitting, and command injection in nine open-source applications. Jovanovic et al. de-

veloped Pixy, an open-source static analysis tool to discover XSS attacks by performing

flow-sensitive, inter-procedural, and context-sensitive data flow analysis on PHP web

applications [80]. They later improved Pixy, adding precise alias analysis, to discover

hundreds of XSS vulnerabilities in three PHP applications, half of which were false

positives [79]. Balzarotti et al. used static and dynamic analysis to develop MiMoSa,

a tool that performs inter-module data flow analysis to discover attacks that leverage

several modules, such as stored XSS. They found 27 data flow violations in five PHP

web applications [12].

All of these static analysis tools differ from our white-box tool because we are not

looking for injection vulnerabilities, but rather for unexpected execution that a devel-

oper did not intend.

33

Chapter 2. Related Work

2.4 Cross-Site Scripting Defense

A broad variety of approaches have been proposed to address different types of

XSS, though no standard taxonomy exists to classify these attacks and defenses. In

general, XSS defenses employ schemes for input sanitization or restrictions on script

generation and execution. Differences among various techniques involve client- or

server-side implementation and static or dynamic operation. We group and review XSS

defenses in this context.

2.4.1 Server-Side Methods

There has been much previous research in server-side XSS defenses [11, 18, 58, 60,

80,93,101,112,123,125,133]. Server-based techniques aim for dynamically generated

pages free of XSS vulnerabilities. This may involve validation or injection of appropri-

ate sanitizers for user input, analysis of scripts to find XSS vulnerabilities, or automatic

generation of XSS-free scripts.

Server-side sanitizer defenses either check existing sanitization for correctness or

generate input encodings automatically to match usage context. For example, Saner [11]

uses static analysis to track unsafe inputs from entry to usage, followed by dynamic

analysis to test input cases for proper sanitization along these paths. SCRIPTGARD [125]

is a complementary approach that assumes a set of “correct” sanitizers and inserts them

34

Chapter 2. Related Work

to match the browser’s parsing context. BEK [67] focuses on creating sanitization func-

tions that are automatically analyzable for preciseness and correctness. Sanitization

remains the main industry-standard defense against XSS and related vulnerabilities.

A number of server-side defenses restrict scripts included in server-generated pages.

For example, XSS-GUARD [18] determines valid scripts dynamically and disallows

unexpected scripts. The authors report performance overheads of up to 46% because of

the dynamic evaluation of HTML and JavaScript. Templating approaches [58,119,123]

generate correct-by-construction scripts that incorporate correct sanitization based on

context. In addition, schemes based on code isolation [3,8,91] mitigate XSS by limiting

DOM access for particular scripts, depending on their context.

Certain XSS defenses [78,80,92,94,101,112,124,136,145] use data-flow analysis

or taint tracking to identify unsanitized user input included in a generated web page.

These approaches typically rely on sanitization, encoding, and other means of separat-

ing unsafe inputs from the script code. Some schemes prevent XSS bugs dynamically,

while others focus on static detection and elimination.

Other approaches [60, 93, 100] combine server-side processing with various client-

side components, such as confinement of untrusted inputs and markup randomization.

Such schemes may parse documents on the server and prevent any modifications of

the resulting parse trees on the client. In addition, randomization of XHTML tags can

render foreign script code meaningless, defeating many XSS injection attacks.

35

Chapter 2. Related Work

2.4.2 Client-Side Methods

Client-side XSS defenses [77,83,97,131,139,142] mitigate XSS while receiving or

rendering untrusted web content. Some of these schemes rely on browser modifications

or plug-ins, often reducing their practical applicability. Others use custom JavaScript

libraries or additional client-side monitoring software. CSP [131] is a browser-based

approach that allows only developer specified JavaScript to execute, and its incorpora-

tion into WWW standards should facilitate wide acceptance and support by all popular

browsers.

Some client-side XSS defenses focus on detecting and preventing leakage of sensi-

tive data. For example, Noxes [83] operates as a personal-firewall browser plug-in that

extracts all static links from incoming web pages, prompting the user about disclosure

of information via dynamically generated links. Vogt et al. [139] also aim to address

this problem, but use taint-tracking analysis within a browser to check for sensitive data

released via XSS attacks.

Client-side HTML security policies mitigate XSS via content restrictions, such as

disallowing unsafe features or executing only “known good” scripts. Using a browser’s

HTML parser, BEEP [77] constructs whitelists of scripts, much like XSS-GUARD’s

server-side approach [18]. BEEP assumes that the web application has no dynamic

scripts whose hashes cannot be pre-computed, limiting its practicality with modern

web applications; moreover, it has been shown that even whitelisted scripts may be

36

Chapter 2. Related Work

vulnerable to attacks [8]. Another custom content security policy is BLUEPRINT’s

page descriptions, which are interpreted and rendered safely by a custom JavaScript

library [93]. Script policies enforced at runtime [62, 97] are also useful for mitigating

XSS exploits.

In general, standardized HTML security policies [131, 142] offer promise as a

means of escaping the recent proliferation of complex, often ad hoc XSS defenses.

CSP simplifies the problem by enforcing fairly strong restrictions, such as disabling

eval() and other dangerous APIs, prohibiting inline JavaScript, and allowing only

local script resources to be loaded. While new web applications can be designed with

CSP in mind, legacy code may require significant rewriting.

37

Chapter 3

An Analysis of Black-Box Web

Application Vulnerability Scanners

First, we will turn our attention to the problem of black-box web application vulner-

abilities scanners—that is, automated tools that attempt to find security vulnerabilities

in web applications. The goal of this chapter is study the current state of black-box web

application vulnerability scanners.

Web application vulnerabilities, such as cross-site scripting and SQL injection, are

one of the most pressing security problems on the Internet today. In fact, web appli-

cation vulnerabilities are widespread, accounting for the majority of the vulnerabilities

reported in the Common Vulnerabilities and Exposures database [40]; they are frequent

targets of automated attacks [128]; and, if exploited successfully, they enable serious

attacks, such as data breaches [103] and drive-by-download attacks [114]. In this sce-

nario, security testing of web applications is clearly essential.

38

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

A common approach to the security testing of web applications consists of using

black-box web vulnerability scanners. These are tools that crawl a web application

to enumerate all the reachable pages and the associated input vectors (e.g., HTML

form fields and HTTP GET parameters), generate specially-crafted input values that

are submitted to the application, and observe the application’s behavior (e.g., its HTTP

responses) to determine if a vulnerability has been triggered.

Web application scanners have gained popularity, due to their independence from

the specific web application’s technology, ease of use, and high level of automation.

(In fact, web application scanners are often marketed as “point-and-click” pentesting

tools.) In the past few years, they have also become a requirement in several standards,

most notably, in the Payment Card Industry Data Security Standard [110].

Nevertheless, web application scanners have limitations. Primarily, as most testing

tools, they provide no guarantee of soundness. Indeed, in the last few years, several

reports have shown that state-of-the-art web application scanners fail to detect a signif-

icant number of vulnerabilities in test applications [5,111,134,135,144]. These reports

are valuable, as they warn against the naive use of web application scanners (and the

false sense of security that derives from it), enable more informed buying decisions,

and prompt to rethink security compliance standards.

However, knowing that web application scanners miss vulnerabilities (or that, con-

versely, they may raise false alerts) is only part of the question. Understanding why

39

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

these tools have poor detection performance is critical to gain insights into how current

tools work and to identify open problems that require further research. More concretely,

we seek to determine the root causes of the errors that web application scanners make,

by considering all the phases of their testing cycle, from crawling, to input selection,

to response analysis. For example, some of the questions that we want to answer are:

Do web application scanners correctly handle JavaScript code? Can they detect vulner-

abilities that are “deep” in the application (e.g., that are reachable only after correctly

submitting complex forms)? Can they precisely keep track of the state of the applica-

tion?

To do this, we built a realistic web application, called WackoPicko, and used it to

evaluate eleven web application scanners on their ability to crawl complex web appli-

cations and to identify the associated vulnerabilities. More precisely, the WackoPicko

application uses features that are commonly found in modern web applications and that

make their crawling difficult, such as complex HTML forms, extensive JavaScript and

Flash code, and dynamically-created pages. Furthermore, we introduced in the applica-

tion’s source code a number of vulnerabilities that are representative of the bugs com-

monly found in real-world applications. The eleven web application scanners that we

tested include both commercial and open-source tools. We evaluated each of them un-

der three different configuration settings, corresponding to increasing levels of manual

intervention. We then analyzed the results produced by the tools in order to understand

40

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

how the tools work, how effective they are, and what makes them fail. The ultimate

goal of this effort is to identify which tasks are the most challenging for black-box

vulnerability scanners and may require novel approaches to be tackled successfully.

The main contributions of this chapter are the following:

• We performed the most extensive and thorough evaluation of black-box web ap-

plication vulnerability scanners so far.

• We identify a number of challenges that scanners need to overcome to success-

fully test modern web applications both in terms of crawling and attack analysis

capabilities.

• We describe the design of a testing web site for web application scanners that

composes crawling challenges with vulnerability instances. This site has been

made available to the public and can be used by other researchers in the field.

• We analyze in detail why the web application vulnerability scanners succeed or

fail and we identify areas that need further research.

3.1 Background

Before discussing the design of our tests, it is useful to briefly discuss the vulnera-

bilities that web application scanners try to identify and to present an abstract model of

a typical scanner.

41

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

3.1.1 Web Application Vulnerabilities

Web applications contain a mix of traditional flaws (e.g., ineffective authentica-

tion and authorization mechanisms) and web-specific vulnerabilities (e.g., using user-

provided inputs in SQL queries without proper sanitization). Here, we will briefly

describe some of the most common vulnerabilities in web applications (for further de-

tails, the interested reader can refer to the OWASP Top 10 List, which tracks the most

critical vulnerabilities in web applications [107]):

• Cross-Site Scripting (XSS): XSS vulnerabilities allow an attacker to execute

malicious JavaScript code as if the application sent that code to the user. This is

the first most serious vulnerability of the OWASP Top 10 List, and WackoPicko

includes five different XSS vulnerabilities, both reflected and stored.

• SQL Injection: SQL injection vulnerabilities allow one to manipulate, create

or execute arbitrary SQL queries. This is the second most serious vulnerability

on the OWASP Top 10 List, and the WackoPicko web application contains both

a reflected and a stored SQL injection vulnerability.

• Code Injection: Code injection vulnerabilities allow an attacker to execute arbi-

trary commands or execute arbitrary code. This is the third most serious vulnera-

bility on the OWASP Top 10 List, and WackoPicko includes both a command line

injection and a file inclusion vulnerability (which might result in the execution of

code).

42

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

• Broken Access Controls: A web application with broken access controls fails

to properly define or enforce access to some of its resources. This is the tenth

most serious vulnerability on the OWASP Top 10 List, and WackoPicko has an

instance of this kind of vulnerability.

3.1.2 Web Application Scanners

In abstract, web application scanners can be seen as consisting of three main mod-

ules: a crawler module, an attacker module, and an analysis module. The crawling

component is seeded with a set of URLs, retrieves the corresponding pages, and follows

links and redirects to identify all the reachable pages in the application. In addition, the

crawler identifies all the input points to the application, such as the parameters of GET

requests, the input fields of HTML forms, and the controls that allow one to upload

files.

The attacker module analyzes the URLs discovered by the crawler and the corre-

sponding input points. Then, for each input and for each vulnerability type for which

the web application vulnerability scanner tests, the attacker module generates values

that are likely to trigger a vulnerability. For example, the attacker module would at-

tempt to inject JavaScript code when testing for XSS vulnerabilities, or strings that have

a special meaning in the SQL language, such as ticks and SQL operators, when testing

for SQL injection vulnerabilities. Input values are usually generated using heuristics or

43

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

using predefined values, such as those contained in one of the many available XSS and

SQL injection cheat-sheets [121, 122].

The analysis module analyzes the pages returned by the web application in response

to the attacks launched by the attacker module to detect possible vulnerabilities and to

provide feedback to the other modules. For example, if the page returned in response to

input testing for SQL injection contains a database error message, the analysis module

may infer the existence of a SQL injection vulnerability.

3.2 The WackoPicko Web Site

A preliminary step for assessing web application scanners consists of choosing a

web application to be tested. We have three requirements for such an application:

it must have clearly defined vulnerabilities (to assess the scanner’s detection perfor-

mance), it must be easily customizable (to add crawling challenges and experiment

with different types of vulnerabilities), and it must be representative of the web appli-

cations in use today (in terms of functionality and of technologies used).

We found that existing applications did not satisfy our requirements. Applications

that deliberately contain vulnerabilities, such as HacmeBank [53] and WebGoat [105],

are often designed to be educational tools rather than realistic testbeds for scanners.

Others, such as SiteGenerator [104], are well-known, and certain scanners may be op-

44

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

timized to perform well on them. An alternative then is to use an older version of an

open-source application that has known vulnerabilities. In this case, however, we would

not be able to control and test the crawling capabilities of the scanners, and there would

be no way to establish a false negative rate.

Therefore, we decided to create our own test application, called WackoPicko. It

is important to note that WackoPicko is a realistic, fully functional web application.

As opposed to a simple test application that contains just vulnerabilities, WackoPicko

tests the scanners under realistic conditions. To test the scanners’ support for client-

side JavaScript code, we also used the open source Web Input Vector Extractor Teaser

(WIVET). WIVET is a synthetic benchmark that measures how well a crawler is able

to discover and follow links in a variety of formats, such as JavaScript, Flash, and form

submissions.

3.2.1 Design

WackoPicko is a photo sharing and photo-purchasing site. A typical user of Wack-

oPicko is able to upload photos, browse other user’s photos, comment on photos, and

purchase the rights to a high-quality version of a photo.

Authentication. WackoPicko provides personalized content to registered users. De-

spite recent efforts for a unified login across web sites [108], most web applications

require a user to create an account in order to utilize the services offered. Thus, Wack-

45

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

oPicko has a user registration system. Once a user has created an account, he/she can

log in to access WackoPicko’s restricted features.

Upload Pictures. When a photo is uploaded to WackoPicko by a registered user, other

users can comment on it, as well as purchase the right to a high-quality version.

Comment On Pictures. Once a picture is uploaded into WackoPicko, all registered

users can comment on the photo by filling out a form. Once created, the comment

is displayed, along with the picture, with all the other comments associated with the

picture.

Purchase Pictures. A registered user on WackoPicko can purchase the high-quality

version of a picture. The purchase follows a multi-step process in which a shopping

cart is filled with the items to be purchased, similar to the process used in e-commerce

sites. After pictures are added to the cart, the total price of the cart is reviewed, discount

coupons may be applied, and the order is placed. Once the pictures are purchased, the

user is provided with links to the high-quality version of the pictures.

Search. To enable users to easily search for various pictures, WackoPicko provides a

search toolbar at the top of every page. The search functionality utilizes the tag field

that was filled out when the picture was uploaded. After a query is issued, the user is

presented with a list of all the pictures that have tags that match the query.

46

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Guestbook. A guestbook page provides a way to receive feedback from all visitors to

the WackoPicko web site. The form used to submit feedback contains a “name” field

and a “comment” field.

Admin Area. WackoPicko has a special area for administrators only, which has a dif-

ferent login mechanism than regular users. Administrators can perform special actions,

such as deleting user accounts, or changing the tags of a picture.

3.2.2 Vulnerabilities

The WackoPicko web site contains sixteen vulnerabilities that are representative of

vulnerabilities found in the wild, as reported by the OWASP Top 10 Project [107]. In

the following we provide a brief description of each vulnerability.

Publicly Accessible Vulnerabilities

A number of vulnerabilities in WackoPicko can be exploited without first logging

into the web site.

Reflected XSS: There is a XSS vulnerability on the search page, which is accessible

without having to log into the application. In fact, the query parameter is not sanitized

before being echoed to the user. The presence of the vulnerability can be tested by

setting the query parameter to <script>alert(’xss’)</script>. When this

47

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

string is reflected to the user, it will cause the browser to display an alert message. (Of

course, an attacker would leverage the vulnerability to perform some malicious activity

rather than alerting the victim.)

Stored XSS: There is a stored XSS vulnerability in the guestbook page. The comment

field is not properly escaped, and therefore, an attacker can exploit this vulnerability by

creating a comment containing JavaScript code. Whenever a user visits the guestbook

page, the attack will be triggered and the (possibly malicious) JavaScript code executed.

Session ID: The session information associated with administrative accounts is han-

dled differently than the information associated with the sessions of normal users. The

functionality associated with normal users uses PHP’s session handling capabilities,

which is assumed to be free of any session-related vulnerabilities (e.g., session fixation,

easily-guessable session IDs). However the admin section uses a custom session cookie

to keep track of sessions. The value used in the cookie is a non-random value that is

incremented when a new session is created. Therefore, an attacker can easily guess the

session id and access the application with administrative rights.

Weak password: The administrative account page has an easily-guessable username

and password combination: admin/admin.

Reflected SQL Injection: WackoPicko contains a reflected SQL injection vulnerabil-

ity in the username field of the login form. By introducing a tick into the username

48

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

field it is possible to perform arbitrary queries in the database and obtain, for example,

the usernames and passwords of all the users in the system.

Command Line Injection: WackoPicko provides a simple service that checks to see

if a user’s password can be found in the dictionary. The password parameter of

the form used to request the check is used without sanitization in the shell command:

grep ˆ<password>$ /etc/dictionaries-common/words. This can be

exploited by providing as the password value a dollar sign (to close grep’s regular ex-

pression), followed by a semicolon (to terminate the grep command), followed by extra

commands.

File Inclusion: The admin interface is accessed through a main page, called index.php.

The index page acts as a portal; any value that is passed as its page parameter will be

concatenated with the string “.php”, and then the resulting PHP script will be run. For

instance, the URL for the admin login page is /admin/index.php?page=login.

On the server side, index.php will execute login.php which displays the form. This

design is inherently flawed, because it introduces a file inclusion vulnerability. An

attacker can exploit this vulnerability and execute remote PHP code by supplying, for

example, http://hacker/blah.php%00 as the page parameter to index.php.

The %00 at the end of the string causes PHP to ignore the “.php” that is appended to

the page parameter. Thus index.php will download and execute the code at http://

hacker/blah.php.

49

http://hacker/blah.php
http://hacker/blah.php

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Unauthorized File Exposure: In addition to executing remote code, the file inclusion

vulnerability can also be exploited to expose local files. Passing /etc/passwd%00

as the “page” GET parameter to index.php of the admin section will cause the contents

of the /etc/passwd file to be disclosed.

Reflected XSS Behind JavaScript: On WackoPicko’s home page there is a form that

checks if a file is in the proper format for WackoPicko to process. This form has two

parameters, a file parameter and a name parameter. Upon a successful upload, the

name is echoed back to the user unsanitized, and therefore, this represents a reflected

vulnerability. However, the form is dynamically generated using JavaScript, and the

target of the form is dynamically created by concatenating strings. This prevents a

crawler from using simple pattern matching to discover the URL used by the form.

Parameter Manipulation: The WackoPicko home page provides a link to a sample

profile page. The link uses the “userid” GET parameter to view the sample user (who

has id of 1). An attacker can manipulate this variable to view any profile page without

having a valid user account.

Vulnerabilities Requiring Authentication

A second class of vulnerabilities in WackoPicko can be exploited only after logging

into the web site.

50

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Stored SQL Injection: When users create an account, they are asked to supply their

first name. This supplied value is then used unsanitized on a page that shows other users

who have a similar first name. An attacker can exploit this vulnerability by creating a

user with the name “’ ; DROP users;#” then visiting the similar users page.

Directory Traversal: When uploading a picture, WackoPicko copies the file uploaded

by the user to a subdirectory of the upload directory. The name of the subdirectory

is the user-supplied tag of the uploaded picture. A malicious user can manipulate the

tag parameter to perform a directory traversal attack. More precisely, by pre-pending

“../../” to the tag parameter the attacker can reference files outside the upload di-

rectory and overwrite them.

Multi-Step Stored XSS: Similar to the stored XSS attack that exists on the guestbook,

comments on pictures are susceptible to a stored XSS attack. However, this vulnerabil-

ity is more difficult to exploit because the user must be logged in and must confirm the

preview of the comment before the attack is actually triggered.

Forceful Browsing: One of the central ideas behind WackoPicko is the ability of users

to purchase the rights to high-quality versions of pictures. However, the access to the

links to the high-quality version of the picture is not checked, and an attacker who

acquires the URL of a high-quality picture can access it without creating an account,

thus bypassing the authentication logic.

51

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Logic Flaw: The coupon system suffers from a logic flaw, as a coupon can be applied

multiple times to the same order reducing the final price of an order to zero.

Reflected XSS Behind Flash: On the user’s home page there is a Flash form that asks

the user for his/her favorite color. The resulting page is vulnerable to a reflected XSS

attack, where the “value” parameter is echoed back to the user without being sanitized.

3.2.3 Crawling Challenges

Crawling is arguably the most important part of a web application vulnerability

scanner; if the scanner’s attack engine is poor, it might miss a vulnerability, but if its

crawling engine is poor and cannot reach the vulnerability, then it will surely miss the

vulnerability. Because of the critical nature of crawling, we have included several types

of crawling challenges in WackoPicko, some of which hide vulnerabilities.

HTML Parsing. Malformed HTML makes it difficult for web application scanners to

crawl web sites. For instance, a crawler must be able to navigate HTML frames and be

able to upload a file. Even though these tasks are straightforward for a human user with

a regular browser, they represent a challenge for crawlers.

Multi-Step Process. Even though most web sites are built on top of the stateless HTTP

protocol, a variety of techniques are utilized to introduce state into web applications.

In order to properly analyze a web site, web application vulnerability scanners must be

52

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

able to understand the state-based transactions that take place. In WackoPicko, there

are several state-based interactions.

Infinite Web Site. It is often the case that some dynamically-generated content will

create a very large (possibly infinite) crawling space. For example, WackoPicko has

the ability to display a daily calendar. Each page of the calendar displays the agenda

for a given day and links to the page for the following day. A crawler that naively

followed the links in the WackoPicko’s calendar would end up trying to visit an infinite

sequence of pages, all generated dynamically by the same component.

Authentication. One feature that is common to most web sites is an authentication

mechanism. Because this is so prevalent, scanners must properly handle authentication,

possibly by creating accounts, logging in with valid credentials, and recognizing actions

that log the crawler out. WackoPicko includes a registration and login system to test

the scanner’s crawlers ability to handle the authentication process correctly.

Client-side Code. Being able to parse and understand client-side technologies presents

a major challenge for web application vulnerability scanners. WackoPicko includes

vulnerabilities behind a JavaScript-created form, as well as behind a Flash application.

Link Extraction. We also tested the scanners on WIVET, an open-source benchmark

for web link extractors [106]. WIVET contains 54 tests and assigns a final score to a

crawler based on the percent of tests that it passes. The tests require scanners to analyze

simple links, multi-page forms, links in comments and JavaScript actions on a variety

53

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Name Version Used License Type Price

Acunetix 6.1 Build 20090318 Commercial Standalone $4,995-$6,350

AppScan 7.8.0.0 iFix001 Build: 570 Security

Rules Version 647

Commercial Standalone $17,550-$32,500

Burp 1.2 Commercial Proxy £125 ($190.82)
Grendel-Scan 1.0 GPLv3 Standalone N/A

Hailstorm 5.7 Build 3926 Commercial Standalone $10,000

Milescan 1.4 Commercial Proxy $495-$1,495

N-Stalker 2009 - Build 7.0.0.207 Commercial Standalone $899-$6,299

NTOSpider 3.2.067 Commercial Standalone $10,000

Paros 3.2.13 Clarified Artistic License Proxy N/A

w3af 1.0-rc2 GPLv2 Standalone N/A

Webinspect 7.7.869.0 Commercial Standalone $6,000-$30,000

Table 3.1: Characteristics of the scanners evaluated.

of HTML elements. There are also AJAX-based tests as well as Flash-based tests. In

our tests, we used WIVET version number 129.

3.3 Experimental Evaluation

We tested 11 web application scanners by running them on our WackoPicko web

site. The tested scanners included 8 proprietary tools and 3 open source programs.

Their cost ranges from free to tens of thousands of dollars. We used evaluation versions

of each software, however they were fully functional. A summary of the characteristics

of the scanners we evaluated is given in Table 3.1.

We ran the WackoPicko web application on a typical LAMP machine, which was

running Apache 2.2.9, PHP 5.2.6, and MySQL 5.0.67. We enabled the allow url -

fopen and allow url include PHP options and disabled the magic quotes

option. We ran the scanners on a machine with a Pentium 4 3.6GHz CPU, 1024 MB of

RAM, and Microsoft Windows XP, Service Pack 2.

54

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

3.3.1 Setup

The WackoPicko server used in testing the web vulnerability scanners was run in

a virtual machine, so that before each test run the server could be put in an identical

initial state. This state included ten regular users, nine pictures, and five administrator

users.

Each scanner was run in three different configuration modes against WackoPicko,

with each configuration requiring more setup on the part of the user. In all configura-

tion styles, the default values for configuration parameters were used, and when choices

were required, sensible values were chosen. In the INITIAL configuration mode, the

scanner was directed to the initial page of WackoPicko and told to scan for all vul-

nerabilities. In the CONFIG setup, the scanner was given a valid username/password

combination or login macro before scanning. MANUAL configuration required the

most work on the part of the user; each scanner was put into a “proxy” mode and then

the user browsed to each vulnerable page accessible without credentials; then, the user

logged in and visited each vulnerability that required a login. Additionally a picture

was uploaded, the rights to a high-quality version of a picture were purchased, and a

coupon was applied to the order. The scanner was then asked to scan the WackoPicko

web site.

55

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Scanner Reflected XSS Stored XSS Reflected SQL Injection Command-line Injection

Acunetix INITIAL INITIAL INITIAL

AppScan INITIAL INITIAL INITIAL

Burp INITIAL MANUAL INITIAL INITIAL

Grendel-Scan MANUAL CONFIG
Hailstorm INITIAL CONFIG CONFIG

Milescan INITIAL MANUAL CONFIG

N-Stalker INITIAL MANUAL MANUAL

NTOSpider INITIAL INITIAL INITIAL

Paros INITIAL INITIAL CONFIG

w3af INITIAL MANUAL INITIAL

Webinspect INITIAL INITIAL INITIAL

Scanner File Inclusion File Exposure XSS via JavaScript XSS via Flash

Acunetix INITIAL INITIAL INITIAL

AppScan INITIAL INITIAL

Burp INITIAL MANUAL

Grendel-Scan
Hailstorm MANUAL

Milescan

N-Stalker INITIAL INITIAL MANUAL

NTOSpider

Paros MANUAL

w3af INITIAL MANUAL

Webinspect INITIAL INITIAL MANUAL

Table 3.2: Detection results. For each scanner, the simplest configuration that detected

a vulnerability is given. Empty cells indicate no detection in any mode.

3.3.2 Detection Results

The results of running the scanners against the WackoPicko site are shown in Ta-

ble 3.2 and, graphically, in Figure 3.1. The values in the table correspond to the simplest

configuration that discovered the vulnerability. An empty cell indicates that the given

scanner did not discover the vulnerability in any mode. The table only reports the vul-

nerabilities that were detected by at least one scanner. Further analysis of why the

scanners missed certain vulnerabilities is contained in Sections 3.3.3 and 3.3.4.

56

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

 0%

 20%

 40%

 60%

 80%

 100%

A
cu

n
et

ix

A
p
p
sc

an

B
u
rp

G
re

n
d
el

−S
ca

n

H
ai

ls
to

rm

M
il

es
ca

n

N
−S

ta
lk

er

N
T

O
S

p
id

er

P
ar

o
s

w
3
af

W
eb

in
sp

ec
t

False negatives

Detection in MANUAL mode

Detection in CONFIG mode

Detection in INITIAL mode

Figure 3.1: Detection performance (true positives and false negatives) of the evaluated

scanners.

The running time of the scanners is shown in Figure 3.2. These times range from 74

seconds for the fastest tool (Burp) to 6 hours (N-Stalker). The majority of the scanners

completed the scan within a half hour, which is acceptable for an automated tool.

False Negatives

One of the benefits of developing the WackoPicko web application to test the scan-

ners is the ability for us to measure the false negatives of the scanners. An ideal scanner

would be able to detect all vulnerabilities. In fact, we had a group composed of students

with average security skills analyze WackoPicko. The students found all vulnerabili-

ties except for the forceful browsing vulnerability. The automated scanners did not do

as well; there were a number of vulnerabilities that were not detected by any scanner.

These vulnerabilities are discussed hereinafter.

57

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

 0

 2,000

 4,000

 6,000

 8,000

 10,000

A
cu

n
et

ix

A
p
p
sc

an

B
u
rp

G
re

n
d
el

−S
ca

n

H
ai

ls
to

rm

M
il

es
ca

n

N
−S

ta
lk

er

N
T

O
S

p
id

er

P
ar

o
s

w
3
af

W
eb

in
sp

ec
t

R
u
n
n
in

g
 T

im
e

(S
ec

o
n
d
s)

27,103

INITIAL

CONFIG

Figure 3.2: A graph of the time that it took each of the scanners to finish looking for

vulnerabilities.

Session ID: No scanner was able to detect the session ID vulnerability on the admin

login page. The vulnerability was not detected because the scanners were not given a

valid username/password combination for the admin interface. This is consistent with

what would happen when scanning a typical application, as the administration interface

would include powerful functionality that the scanner should not invoke, like view,

create, edit or delete sensitive user data. The session ID was only set on a successful

login, which is why this vulnerability was not detected by any scanner.

Weak Password: Even though the scanners were not given a valid username/password

combination for the administrator web site, an administrator account with the combina-

tion of admin/admin was present on the system. NTOSpider was the only scanner that

58

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

successfully logged in with the admin/admin combination. However, it did not report

it as an error, which suggests that it was unable to detect that the login was successful,

even though the response that was returned for this request was different from every

other login attempt.

Parameter Manipulation: The parameter manipulation vulnerability was not discov-

ered by any scanner. There were two causes for this: first, only three of the scanners

(AppScan, NTOSpider, and w3af) input a different number than the default value “1”

to the userid parameter. Of the three, only NTOSpider used a value that successfully

manipulated the userid parameter. The other reason was that in order to successfully

detect a parameter manipulation vulnerability, the scanner needs to determine which

pages require a valid username/password to access and which ones do not and it is

clear that none of the scanners make this determination.

Stored SQL Injection: The stored SQL injection was also not discovered by any

scanners, due to the fact that a scanner must create an account to discover the stored

SQL injection. The reasons for this are discussed in more detail in Section 3.3.4.

Directory Traversal: The directory traversal vulnerability was also not discovered

by any of the scanners. This failure is caused by the scanners being unable to upload

a picture. We discuss this issue in Section 3.3.4, when we analyze how each of the

scanners behaved when they had to upload a picture.

59

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Name INITIAL CONFIG MANUAL

Acunetix 1 7 4

AppScan 11 20 26

Burp 1 2 6

Grendel-Scan 15 16 16

Hailstorm 3 11 3

Milescan 0 0 0

N-Stalker 5 0 0

NTOSpider 3 1 3

Paros 1 1 1

w3af 1 1 9

Webinspect 215 317 297

Table 3.3: False positives.

Multi-Step Stored XSS: The stored XSS vulnerability that required a confirmation

step was also missed by every scanner. In Section 3.3.4, we analyze how many of the

scanners were able to successfully create a comment on a picture.

Forceful Browsing: No scanner found the forceful browsing vulnerability, which is

not surprising since it is an application-specific vulnerability. These vulnerabilities are

difficult to identify without access to the source code of the application [12].

Logic Flaw: Another vulnerability that none of the scanners uncovered was the logic

flaw that existed in the coupon management functionality. Also in this case, some

domain knowledge about the application is needed to find the vulnerability.

60

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

False Positives

The total number of false positives for each of the scanning configurations are show

in Table 3.3. The number of false positives that each scanner generates is an important

metric, because the greater the number of false positives, the less useful the tool is to

the end user, who has to figure out which of the vulnerabilities reported are actual flaws

and which are spurious results of the analysis.

The majority of the false positives across all scanners were due to a supposed

“Server Path Disclosure.” This is an information leakage vulnerability where the server

leaks the paths of local files, which might give an attacker hints about the structure of

the file system.

An analysis of the results identified two main reasons why these false positives

were generated. The first is that while testing the application for file traversal or file

injection vulnerabilities, some of the scanners passed parameters with values of file

names, which, on some pages (e.g., the guestbook page), caused the file name to be

included in that page’s contents. When the scanner then tested the page for a Server

Path Disclosure, it found the injected values in the page content, and generated a Server

Path Disclosure vulnerability report. The other reason for the generation of false pos-

itives is that WackoPicko uses absolute paths in the href attribute of anchors (e.g.,

/users/home.php), which the scanner mistook for the disclosure of paths in the

61

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

local system. Webinspect generated false positives because of both the above reasons,

which explains the large amount of false positives produced by the tool.

Some scanners reported genuine false positives: Hailstorm reported a false XSS

vulnerability and two false PHP code injection vulnerabilities, NTOSpider reported

three false XSS vulnerabilities and w3af reported a false PHP eval() input injection

vulnerability.

Measuring and Comparing Detection Capabilities

Comparing the scanners using a single benchmark like WackoPicko does not rep-

resent an exhaustive evaluation. However, we believe that the results provide insights

about the current state of black-box web application vulnerability scanners.

One possible way of comparing the results of the scanners is arranging them in

a lattice. This lattice is ordered on the basis of strict dominance. Scanner A strictly

dominates Scanner B if and only if for every vulnerability discovered by Scanner B,

Scanner A discovered that vulnerability with the same configuration level or simpler,

and Scanner A either discovered a vulnerability that Scanner B did not discover or

Scanner A discovered a vulnerability that Scanner B discovered, but with a simpler

configuration. Strictly dominates has the property that any assignment of scores to

vulnerabilities must preserve the strictly dominates relationship.

62

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Milescan

Grendel-Scan

Webinspect

NTOSpider

w3afParos

Hailstorm

Acunetix

AppScan

Burp N-Stalker

Figure 3.3: Dominates graph.

Figure 3.3 shows the strictly dominates graph for the scanners, where a directed

edge from Scanner A to Scanner B means that Scanner A strictly dominates Scanner B.

Because strictly dominates is transitive, if one scanner strictly dominates another it also

strictly dominates all the scanners that the dominated scanner dominates, therefore, all

redundant edges are not included. Figure 3.3 is organized so that the scanners in the

top level are those that are not strictly dominated by any scanners. Those in the second

level are strictly dominated by only one scanner and so on, until the last level, which

contains those scanners that strictly dominate no other scanner.

Some interesting observations arise from Figure 3.3. N-Stalker does not strictly

dominate any scanner and no scanner strictly dominates it. This is due to the unique

combination of vulnerabilities that N-Stalker discovered and missed. Burp is also inter-

esting due to the fact that it only dominates two scanners but no scanner dominates Burp

because it was the only scanner to discover the command-line injection vulnerability.

63

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Name Detection INITIAL

Reachability

CONFIG

Reachability

MANUAL

Reachability

XSS Reflected 1 0 0 0

XSS Stored 2 0 0 0

SessionID 4 0 0 0

SQL Injection Reflected 1 0 0 0

Commandline Injection 4 0 0 0

File Inclusion 3 0 0 0

File Exposure 3 0 0 0

XSS Reflected behind

JavaScript

1 3 3 0

Parameter Manipulation 8 0 0 0

Weak password 3 0 0 0

SQL Injection Stored Login 7 7 3 3

Directory Traversal Login 8 8 6 4

XSS Stored Login 2 8 7 6

Forceful Browsing Login 8 7 6 3

Logic Flaws - Coupon 9 9 8 6

XSS Reflected behind flash 1 9 7 1

Table 3.4: Vulnerability scores.

While Figure 3.3 is interesting, it does not give a way to compare two scanners

where one does not strictly dominate the other. In order to compare the scanners, we

assigned scores to each vulnerability present in WackoPicko. The scores are displayed

in Table 3.4. The “Detection” score column in Table 3.4 is how many points a scanner

is awarded based on how difficult it is for an automated tool to detect the existence of

the vulnerability. In addition to the “Detection” score, each vulnerability is assigned a

“Reachability” score, which indicates how difficult the vulnerability is to reach (i.e., it

reflects the difficulty of crawling to the page that contains the vulnerability). There are

three “Reachability” scores for each vulnerability, corresponding to how difficult it is

64

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Name Score

Acunetix 14

Webinspect 13

Burp 13

N-Stalker 13

AppScan 10

w3af 9

Paros 6

Hailstorm 6

NTOSpider 4

Milescan 4

Grendel-Scan 3

Table 3.5: Final ranking.

for a scanner to reach the vulnerability when run in INITIAL, CONFIG, or MANUAL

mode. Of course, these vulnerability scores are subjective and depend on the specific

characteristics of our WackoPicko application. However, their values try to estimate

the crawling and detection difficulty of each vulnerability in this context.

The final score for each scanner is calculated by adding up the “Detection” score

for each vulnerability the scanner detected and the “Reachability” score for the con-

figuration (INITIAL, CONFIG and MANUAL) used when running the scanner. In the

case of a tie, the scanners were ranked by how many vulnerabilities were discovered in

INITIAL mode, which was enough to break all ties. Table 3.5 shows the final ranking

of the scanners.

65

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

3.3.3 Attack and Analysis Capabilities

Analyzing how each scanner attempted to detect vulnerabilities gives us insight into

how these programs work and illuminates areas for further research. First, the scanner

would crawl the site looking for injection points, typically in the form of GET or POST

parameters. Once the scanner identifies all the inputs on a page, it then attempts to

inject values for each parameter and observes the response. When a page has more

than one input, each parameter is injected in turn, and generally no two parameters are

injected in the same request. However, scanners differ in what they supply as values of

the non-injected parameters: some have a default value like 1234 or Peter Wiener,

while others leave the fields blank. This has an impact on the results of the scanner, for

example the WackoPicko guestbook requires that both the name and comment fields

are present before making a comment, and thus the strategy employed by each scanner

can affect the effectiveness of the vulnerability scanning process.

When detecting XSS attacks, most scanners employed similar techniques, some

with a more sophisticated attempt to evade possible filters than others. One particularly

effective strategy employed was to first input random data with various combinations

of dangerous characters, such as / ,",’,<, and >, and then, if one of these com-

binations was found unchanged in the response, to attempt the injection of the full

range of XSS attacks. This technique speeds up the analysis significantly, because the

full XSS attack is not attempted against every input vector. Differently, some of the

66

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

scanners took an exhaustive approach, attempting the full gamut of attacks on every

combination of inputs.

When attempting a XSS attack, the thorough scanners would inject the typical

<script> alert(’xss’) </script> as well as a whole range of XSS attack

strings, such as JavaScript in a tag with the onmouseover attribute, in an img, div

or meta tag, or iframe. Other scanners attempted to evade filters by using a different

JavaScript function other than alert, or by using a different casing of script, such

as ScRiPt.

Unlike with XSS, scanners could not perform an easy test to exclude a parameter

from thorough testing for other Unsanitized Input vulnerabilities because the results of

a successful exploit might not be readily evident in the response. This is true for the

command-line injection on the WackoPicko site, because the output of the injectable

command was not used in the response. Burp, the only scanner that was able to suc-

cessfully detect the command line injection vulnerability, did so by injecting ‘ping

-c 100 localhost‘ and noticing that the response time for the page was much

slower than when nothing was injected.

This pattern of measuring the difference in response times was also seen in detecting

SQL injections. In addition to injecting something with a SQL control character, such

as tick or quote and seeing if an error is generated, the scanners also used a time-delay

SQL injection, inputting waitfor delay ’0:0:20’ and seeing if the execution

67

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

was delayed. This is a variation of the technique of using time-delay SQL injection to

extract database information from a blind SQL vulnerability.

When testing for File Exposure, the scanners were typically the same; however one

aspect caused them to miss the WackoPicko vulnerability. Each scanner that was look-

ing for this vulnerability input the name of a file that they knew existed on the system,

such as /etc/passwd on UNIX-like systems or C:\boot.ini for Windows. The

scanners then looked for known strings in the response. The difficulty in exploiting the

WackoPicko file exposure was including the null-terminating character (%00) at the

end of the string, which caused PHP to ignore anything added by the application after

the /etc/passwd part. The results show that only 4 scanners successfully discovered

this vulnerability.

The remote code execution vulnerability in WackoPicko is similar to the file ex-

posure vulnerability. However, instead of injecting known files, the scanners injected

known web site addresses. This was typically from a domain the scanner’s developers

owned, and thus when successfully exploited, the injected page appeared instead of the

regular page. The same difficulty in a successful exploitation existed in the File Ex-

posure vulnerability, so a scanner had to add %00 after the injected web site. Only 3

scanners were able to successfully identify this vulnerability.

68

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

3.3.4 Crawling Capabilities

The number of URLs requested and accessed varies considerably among scanners,

depending on the capability and strategies implemented in the crawler and attack com-

ponents. Table 3.6 shows the number of times each scanner made a POST or GET

request to a vulnerable URL when the scanners were run in INITIAL, CONFIG, and

MANUAL mode. For instance, from Table 3.6 we can see that Hailstorm was able to

access many of the vulnerable pages that required a valid username/password when run

in INITIAL mode. It can also be seen that N-Stalker takes a shotgun-like approach

to scanning; it has over 1,000 accesses for each vulnerable URL, while in contrast

Grendel-Scan never had over 50 accesses to a vulnerable URL.

In the following, we discuss the main challenges that the crawler components of the

web application scanners under test faced.

HTML

The results for the stored XSS attack reveal some interesting characteristics of the

analysis performed by the various scanners. For instance, Burp, Grendel-Scan, Hail-

storm, Milescan, N-Stalker, and w3af were unable to discover the stored XSS vulnera-

bility in INITIAL configuration mode. Burp and N-Stalker failed because of defective

HTML parsing. Neither of the scanners correctly interpreted the <textarea> tag

as an input to the HTML form. This was evident because both scanners only sent the

69

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

name parameter when attempting to leave a comment on the guestbook. When run in

MANUAL mode, however, the scanners discovered the vulnerability, because the user

provided values for all these fields. Grendel-Scan and Milescan missed the stored XSS

vulnerability for the same reason: they did not attempt a POST request unless the user

used the proxy to make the request.

Hailstorm did not try to inject any values to the guestbook when in INITIAL mode,

and, instead, used testval as the name parameter and Default text as the

comment parameter. One explanation for this could be that Hailstorm was run in the

default “turbo” mode, which Cenzic claims catches 95% of vulnerabilities, and chose

not to fuzz the form to improve speed.

Finally, w3af missed the stored XSS vulnerability due to leaving one parameter

blank while attempting to inject the other parameter. It was unable to create a guestbook

entry, because both parameters are required.

Uploading a Picture

Being able to upload a picture is critical to discover the Directory Traversal vulner-

ability, as a properly crafted tag parameter can overwrite any file the web server can

access. It was very difficult for the scanners to successfully upload a file: no scanner

was able to upload a picture in INITIAL and CONFIG modes, and only AppScan and

Webinspect were able to upload a picture after being showed how to do it in MANUAL

70

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

configuration, with AppScan and Webinspect uploading 324 and 166 pictures respec-

tively. Interestingly, Hailstorm, N-Stalker and NTOSpider never successfully uploaded

a picture, even in MANUAL configuration. This surprising result is due to poor prox-

ies or poor in-application browsers. For instance, Hailstorm includes an embedded

Mozilla browser for the user to browse the site when they want to do so manually, and

after repeated attempts the embedded browser was never able to upload a file. The

other scanners that failed, N-Stalker and NTOSpider, had faulty HTTP proxies that did

not know how to properly forward the file uploaded, thus the request never completed

successfully.

Client-side Code

The results of the WIVET tests are shown in Figure 3.4. Analyzing the WIVET

results gives a very good idea of the JavaScript capabilities of each scanner. Of all the 54

WIVET tests, 24 required actually executing or understand JavaScript code; that is, the

test could not be passed simply by using a regular expression to extract the links on the

page. Webinspect was the only scanner able to complete all of the dynamic JavaScript

challenges. Of the rest of the scanners, Acunetix and NTOSpider only missed one

of the dynamic JavaScript tests. Even though Hailstorm missed 12 of the dynamic

JavaScript tests, we believe that this is because of a bug in the JavaScript analysis

engine and not a general limitation of the tool. In fact, Hailstorm was able to correctly

71

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

W
eb

in
sp

ec
t

A
cu

n
et

ix

N
T

O
S

p
id

er

H
ai

ls
to

rm

w
3
af

A
p
p
sc

an

M
il

es
ca

n

G
re

n
d
el

−S
ca

n

B
u
rp

P
ar

o
s

N
−S

ta
lk

er

%
 o

f
W

IV
E

T
 T

es
ts

 P
as

se
d

Figure 3.4: WIVET results.

handle JavaScript on the onmouseup and onclick parametrized functions. These

tests were on parametrized onmouseout and onmousedown functions, but since

Hailstorm was able to correctly handle the onmouseup and onclick parametrized

functions, this can be considered a bug in Hailstorm’s JavaScript parsing. From this,

it can also be concluded that AppScan, Grendel-Scan, Milescan, and w3af perform no

dynamic JavaScript parsing. Thus, Webinspect, Acunetix, NTOSpider, and Hailstorm

can be claimed to have the best JavaScript parsing. The fact that N-Stalker found the

reflected XSS vulnerability behind a JavaScript form in WackoPicko suggests that it

can execute JavaScript, however it failed the WIVET benchmark so we cannot evaluate

the extent of the parsing performed.

72

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

In looking at the WIVET results, there was one benchmark that no scanner was able

to reach, which was behind a Flash application. The application had a link on a button’s

onclick event, however this link was dynamically created at run time. This failure

shows that none of the current scanners processes Flash content with the same level

of sophistication as JavaScript. This conclusion is supported by none of the scanners

discovering the XSS vulnerability behind a Flash application in WackoPicko when in

INITIAL or CONFIG mode.

Authentication

Table 3.7 shows the attempts that were made to create an account on the Wack-

oPicko site. The Name column is the name of the scanner, “Successful” is the number

of accounts successfully created, and “Error” is the number of account creation at-

tempts that were unsuccessful. Note that Table 3.7 reports the results of the scanners

when run in INITIAL mode only, because the results for the other configurations were

almost identical.

Table 3.7 shows the capability of the scanners to handle user registration function-

ality. As can be seen from Table 3.7, only five of the scanners were able to successfully

create an account. Of these, Hailstorm was the only one to leverage this ability to visit

vulnerable URLs that required a login in its INITIAL run.

73

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Creating an account is important in discovering the stored SQL injection that no

scanner successfully detected. It is fairly telling that even though five scanners were

able to create an account, none of them detected the vulnerability. It is entirely possible

that none of the scanners actively searched for stored SQL injections, which is much

harder to detect than stored XSS injections.

In addition to being critically important to the WackoPicko benchmark, being able

to create an account is an important skill for a scanner to have when analyzing any web

site, especially if that scanner wishes to be a point-and-click web application vulnera-

bility scanner.

Multi-step Processes

In the WackoPicko web site there is a vulnerability that is triggered by going through

a multi-step process. This vulnerability is the stored XSS on pictures, which requires

an attacker to confirm a comment posting for the attack to be successful. Hailstorm

and NTOSpider were the only scanners to successfully create a comment on the INI-

TIAL run (creating 25 and 1 comment, respectively). This is important for two reasons:

first, to be able to create a comment in the INITIAL run, the scanner had to create an

account and log in with that account, which is consistent with Table 3.7. Also, all 25

of the comments successfully created by Hailstorm only contained the text Default

74

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

text, which means that Hailstorm was not able to create a comment that exploited the

vulnerability.

All scanners were able to create a comment when run in MANUAL configuration,

since they were shown by the user how to carry out this task. However, only AppScan,

Hailstorm, NTOSpider, and Webinspect (creating 6, 21, 7, and 2 comments respec-

tively) were able to create a comment that was different than the one provided by the

user. Of these scanners only Webinspect was able to create a comment that exploited the

vulnerability, <iFrAmE sRc=hTtP://xSrFtEsT .sPi/> </iFrAmE>, how-

ever Webinspect failed to report this vulnerability. One plausible explanation for not

detecting would be the scanners’ XSS strategy discussed in Section 3.3.3. While test-

ing the text parameter for a vulnerability, most of the scanners realized that it was

properly escaped on the preview page, and thus stopped trying to inject XSS attacks.

This would explain the directory traversal attack comment that AppScan successfully

created and why Hailstorm did not attempt any injection. This is an example where the

performance optimization of the vulnerability analysis can lead to false negatives.

Infinite Web Sites

One of the scanners attempted to visit all of the pages of the infinite calendar. When

running Grendel-Scan, the calendar portion of WackoPicko had to be removed because

the scanner ran out of memory attempting to access every page. Acunetix, Burp, N-

75

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Stalker and w3af had the largest accesses (474, 691, 1780 and 3094 respectively), due

to their attempts to exploit the calendar page. The other scanners used less accesses

(between 27 and 243) because they were able to determine that no error was present.

3.4 Lessons Learned

We found that the crawling of modern web applications can be a serious challenge

for today’s web vulnerability scanners. A first class of problems we encountered con-

sisted of implementation errors and the lack of support for commonly-used technolo-

gies. For example, handling of multimedia data (image uploads) exposed bugs in cer-

tain proxy-based scanners, which prevented the tools from delivering attacks to the

application under test. Incomplete or incorrect HTML parsers caused scanners to ig-

nore input vectors that would have exposed vulnerabilities. The lack of support for

JavaScript (and Flash) prevented tools from reaching vulnerable pages altogether. Sup-

port for well-known, pervasive technology should be improved.

The second class of problems that hindered crawling is related to the design of mod-

ern web applications. In particular, applications with complex forms and aggressive

checking of input values can effectively block a scanner, preventing it from crawling

the pages “deep” in the web site structure. Handling this problem could be done, for

example, by using heuristics to identify acceptable inputs or by reverse engineering

76

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

the input filters. Furthermore, the behavior of an application can be wildly different de-

pending on its internal “state,” i.e., the values of internal variables that are not explicitly

exposed to the scanner. The classic example of application state is whether the current

user is logged in or not. A scanner that does not correctly model and track the state of

an application (e.g., it does not realize that it has been automatically logged out) will

fail to crawl all relevant parts of the application. More sophisticated algorithms are

needed to perform “deep” crawling and track the state of the application under test.

Current scanners fail to detect (or even check for) application-specific (or “logic”)

vulnerabilities. Unfortunately, as applications become more complex, this type of vul-

nerabilities will also become more prevalent. More research is warranted to automate

the detection of application logic vulnerabilities.

In conclusion, far from being point-and-click tools to be used by anybody, web

application black-box security scanners require a sophisticated understanding of the

application under test and of the limitations of the tool, in order to be effective.

3.5 Conclusions

This chapter presented the evaluation of eleven black-box web vulnerability scan-

ners. The results of the evaluation clearly show that the ability to crawl a web applica-

77

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

tion and reach “deep” into the application’s resources is as important as the ability to

detect the vulnerabilities themselves.

It is also clear that although techniques to detect certain kinds of vulnerabilities are

well-established and seem to work reliably, there are whole classes of vulnerabilities

that are not well-understood and cannot be detected by the state-of-the-art scanners. We

found that eight out of sixteen vulnerabilities were not detected by any of the scanners.

We have also found areas that require further research so that web application vul-

nerability scanners can improve their detection of vulnerabilities. Deep crawling is vital

to discover all vulnerabilities in an application. Improved reverse engineering is neces-

sary to keep track of the state of the application, which can enable automated detection

of complex vulnerabilities.

Finally, we found that there is no strong correlation between cost of the scanner and

functionality provided as some of the free or very cost-effective scanners performed as

well as scanners that cost thousands of dollars.

78

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Scanner Reflected XSS Stored XSS Reflected SQL Injection

INITIAL CONFIG MANUAL

Acunetix 496 638 498 613 779 724 544 709 546

AppScan 581 575 817 381 352 492 274 933 628

Burp 256 256 207 192 192 262 68 222 221

Grendel-Scan 0 0 44 1 1 3 14 34 44

Hailstorm 232 229 233 10 205 209 45 224 231

Milescan 104 0 208 50 0 170 75 272 1,237
N-Stalker 1,738 1,162 2,689 2,484 2,100 3,475 2,764 1,022 2,110

NTOSpider 856 679 692 252 370 370 184 5 5

Paros 68 68 58 126 126 110 151 299 97

w3af 157 157 563 259 257 464 1,377 1,411 2,634

Webinspect 108 108 105 631 631 630 297 403 346

Scanner Command-line Injection File Inclusion /

File Exposure /

Weak password

XSS Reflected - JavaScript

INITIAL CONFIG MANUAL

Acunetix 495 637 497 198 244 200 670 860 671

AppScan 189 191 288 267 258 430 0 0 442

Burp 68 68 200 125 316 320 0 0 178
Grendel-Scan 1 1 3 2 2 5 0 0 2

Hailstorm 180 160 162 8 204 216 153 147 148

Milescan 0 0 131 80 0 246 0 0 163

N-Stalker 2,005 1,894 1,987 1,437 2,063 1,824 1,409 1,292 1,335

NTOSpider 105 9 9 243 614 614 11 13 13

Paros 28 28 72 146 146 185 0 0 56

w3af 140 142 253 263 262 470 0 0 34

Webinspect 164 164 164 239 237 234 909 909 0

Scanner Parameter Manipulation Directory Traversal Logic Flaw

INITIAL CONFIG MANUAL

Acunetix 2 0 2 35 1,149 37 0 0 5

AppScan 221 210 222 80 70 941 0 0 329

Burp 192 194 124 68 68 394 0 0 314
Grendel-Scan 3 3 6 1 1 3 0 0 6

Hailstorm 3 143 146 336 329 344 131 132 5

Milescan 105 0 103 8 0 163 0 0 1

N-Stalker 1,291 1,270 1,302 22 2,079 4,704 0 0 3

NTOSpider 107 115 115 11 572 572 0 11 11

Paros 72 72 72 14 14 0 0 0 114

w3af 128 128 124 31 30 783 0 0 235

Webinspect 102 102 102 29 29 690 0 8 3

Scanner Forceful Browsing XSS Reflected behind flash

INITIAL CONFIG MANUAL

Acunetix 0 0 206 1 34 458

AppScan 0 0 71 0 0 243

Burp 0 0 151 0 0 125
Grendel-Scan 0 0 1 0 0 3

Hailstorm 102 102 105 0 0 143

Milescan 0 0 60 0 0 68

N-Stalker 0 0 2 0 0 1,315

NTOSpider 0 0 0 0 11 11

Paros 0 0 70 0 0 60

w3af 0 0 270 0 0 119

Webinspect 0 118 82 0 0 97

Table 3.6: Number of accesses to vulnerable web pages in INITIAL, CONFIG, and

MANUAL modes.

79

Chapter 3. An Analysis of Black-Box Web Application Vulnerability Scanners

Name Successful Error

Acunetix 0 431

AppScan 1 297

Burp 0 0

Grendel-Scan 0 0

Hailstorm 107 276

Milescan 0 0

N-Stalker 74 1389

NTOSpider 74 330

Paros 0 176

w3af 0 538

Webinspect 127 267

Table 3.7: Account creation.

80

Chapter 4

A State-Aware Black-Box Web

Vulnerability Scanner

We identified the biggest problem common to black-box web application vulnera-

bility scanners in the previous chapter: The scanners treat the web application as if it

was a web site, and ignore the fact that it is an application with state. In this chapter, we

describe methods and approaches to automatically infer the state of a web application

in a black-box manner, and we apply this to a black-box web application vulnerability

scanner.

Web applications are the most popular way of delivering services via the Internet.

A modern web application is composed of a back-end, server-side part (often writ-

ten in Java or in interpreted languages such as PHP, Ruby, or Python) running on the

provider’s server, and a client part running in the user’s web browser (implemented in

81

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

JavaScript and using HTML/CSS for presentation). The two parts often communicate

via HTTP over the Internet using Asynchronous JavaScript and XML (AJAX) [56].

The complexity of modern web applications, along with the many different tech-

nologies used in various abstraction layers, are the root cause of vulnerabilities in web

applications. In fact, the number of reported web application vulnerabilities is growing

sharply [52, 132].

The occurrence of vulnerabilities could be reduced by better education of web de-

velopers, or by the use of security-aware web application development frameworks [34,

119], which enforce separation between structure and content of input and output data.

In both cases, more effort and investment in training is required, and, therefore, cost

and time-to-market constraints will keep pushing for the current fast-but-insecure de-

velopment model.

A complementary approach for fighting security vulnerabilities is to discover and

patch bugs before malicious attackers find and exploit them. One way is to use a white-

box approach, employing static analysis of the source code [11, 48, 71, 81]. There

are several drawbacks to a white-box approach. First, the potential applications that

can be analyzed is reduced to only those applications that use the target programming

language. In addition, there is the problem of substantial false positives. Finally, the

source code of the application itself may be unavailable.

82

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

The other approach to discovering security vulnerabilities in web applications is

by observing the application’s output in response to a specific input. This method of

analysis is called black-box testing, as the application is seen as a sealed machine with

unobservable internals. Black-box approaches are able to perform large-scale analysis

across a wide range of applications. While black-box approaches usually have fewer

false positives than white-box approaches, black-box approaches suffer from a discov-

erability problem: They need to reach a page to find vulnerabilities on that page.

Classical black-box web vulnerability scanners crawl a web application to enumer-

ate all reachable pages and then fuzz the input data (URL parameters, form values,

cookies) to trigger vulnerabilities. However, this approach ignores a key aspect of

modern web applications: Any request can change the state of the web application.

In the most general case, the state of the web application is any data (database,

filesystem, time) that the web application uses to determine its output. Consider a forum

that authenticates users, an e-commerce application where users add items to a cart, or

a blog where visitors and administrators can leave comments. In all of these modern

applications, the way a user interacts with the application determines the application’s

state.

Because a black-box web vulnerability scanner will never detect a vulnerability on a

page that it does not see, scanners that ignore a web application’s state will only explore

and test a (likely small) fraction of the web application.

83

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

In this chapter, we propose to improve the effectiveness of black-box web vul-

nerability scanners by increasing their capability to understand the web application’s

internal state. Our tool constructs a partial model of the web application’s state ma-

chine in a fully-automated fashion. It then uses this model to fuzz the application in a

state-aware manner, traversing more of the web application and thus discovering more

vulnerabilities.

The main contributions of this chapter are the following:

• A black-box technique to automatically learn a model of a web application’s

state.

• A novel vulnerability analysis technique that leverages the web application’s state

model to drive fuzzing.

• An evaluation of our technique, showing that both code coverage and effective-

ness of vulnerability analysis are improved.

4.1 Motivation

Crawling modern web applications means dealing with the web application’s chang-

ing state. Previous work in detecting workflow violations [12, 36, 48, 88] focused on

navigation, where a malicious user can access a page that is intended only for admin-

84

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

index.phplogin.php

view.php

Figure 4.1: Navigation graph of a simple web application.

S 0 S 1
login.php

index.php index.php

view.php

Figure 4.2: State machine of a simple web application.

istrators. This unauthorized access is a violation of the developer’s intended work-flow

of the application.

We wish to distinguish a navigation-based view of the web application, which is

simply derived from crawling the web application, from the web application’s internal

state machine. To illustrate this important difference, we will use a small example.

Consider a simple web application with three pages, index.php, login.php,

and view.php. The view.php page is only accessible after the login.php page

is accessed. There is no logout functionality. A client accessing this web application

might make a series of requests like the following:

〈index.php, login.php, index.php, view.php,

index.php, view.php〉

85

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Analyzing this series of requests from a navigation perspective creates a navigation

graph, shown in Figure 4.1. This graph shows which page is accessible from every other

page, based on the navigation trace. However, the navigation graph does not represent

the information that view.php is only accessible after accessing login.php, or

that index.php has changed after requesting login.php (it includes the link to

view.php).

What we are interested in is not how to navigate the web application, but how the

requests we make influence the web application’s internal state machine. The sim-

ple web application described previously has the internal state machine shown in Fig-

ure 4.2. The web application starts with the internal state S 0. Arrows from a state

show how a request affects the web application’s internal state machine. In this ex-

ample, in the initial state, index.php does not change the state of the application,

however, login.php causes the state to transition from S 0 to S 1. In the new state

S 1, both index.php and view.php do not change the state of the web application.

The state machine in Figure 4.2 contains important information about the web ap-

plication. First, it shows that login.php permanently changes the web application’s

state, and there is no way to recover from this change. Second, it shows that the

index.php page is seen in two different states.

Now the question becomes: “How does knowledge of the web application’s state

machine (or lack thereof) affect a black-box web vulnerability scanner?” The scanner’s

86

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

goal is to find vulnerabilities in the application, and to do so it must fuzz as many

execution paths of the server-side code as possible1. Consider the simple application

described in Figure 4.2. In order to fuzz as many code paths as possible, a black-

box web vulnerability scanner must fuzz the index.php page in both states S 0

and S 1, since the code execution of index.php can follow different code paths

depending on the current state (more precisely, in state S 1, index.php includes a

link to view.php, which is not present in S 0).

A black-box web vulnerability scanner can also use the web application’s state ma-

chine to handle requests that change state. For example, when fuzzing the login.php

page of the sample application, a fuzzer will try to make several requests to the page,

fuzzing different parameters. However, if the first request to login.php changes

the state of the application, all further requests to login.php will no longer execute

along the same code path as the first one. Thus, a scanner must have knowledge of

the web application’s state machine to test if the state was changed, and if it was, what

requests to make to return the application to the previous state before continuing the

fuzzing process.

We have shown how a web application’s state machine can be leveraged to improve

a black-box web vulnerability scanner. Our goal is to infer, in a black-box manner, as

much of the web application’s state machine as possible. Using only the sequence of

1Hereinafter, we assume that the scanner relies on fuzzer-based techniques. However, any other

automated vulnerability analysis technique would benefit from our state-aware approach.

87

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

requests, along with the responses to those requests, we build a model of as much of

the web application’s state machine as possible. In the following section, we describe,

at a high level, how we infer the web application’s state machine. Then, in Section 4.3,

we provide the details of our technique.

4.2 State-Aware Crawling

In this section, we describe our state-aware crawling approach. In Section 4.2.1,

we describe web applications and define terms that we will use in the rest of the chap-

ter. Then, in Section 4.2.2, we describe the various facets of the state-aware crawling

algorithm at a high level.

4.2.1 Web Applications

Before we can describe our approach to inferring a web application’s state, we must

first define the elements that come into play in our web application model.

A web application consists of a server component, which accepts HTTP requests.

This server component can be written in any language, and could use many differ-

ent means of storage (database, filesystem, memcache). After processing a request,

the server sends back a response. This response encapsulates some content, typically

88

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

HTML. The HTML content contains links and forms which describe how to make fur-

ther requests.

Now that we have described a web application at a high level, we need to define

specific terms related to web applications that we use in the rest of this chapter.

• Request—The HTTP request made to the web application. Includes anything

(typically in the form of HTTP headers) that is sent by the user to the web ap-

plication: the HTTP Method, URL, Parameters (GET and POST), Cookies, and

User-Agent.

• Response—The response sent by the server to the user. Includes the HTTP Re-

sponse Code and the content (typically HTML).

• Page—The HTML page that is contained in the response from a web application.

• Link—Element of an HTML page that tells the browser how to create a sub-

sequent request. This can be either an anchor or a form. An anchor always

generates a GET request, but a form can generate either a POST or GET request,

depending on the parameters of the form.

• State—Anything that influences the web application’s server-side code execu-

tion.

89

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

no itemsS 0

S 1

purchased item S 2

item in cart

POST /purchase.php

GET /logout.php

POST /login.php

GET /logout.php

GET /delete item.php

POST /login.php

POST /login.php POST /add item.php

GET /logout.php

Figure 4.3: The state machine of a simple e-commerce application.

Web Application Model

We use a symbolic Mealy machine [15] to model the web application as a black-

box. A Mealy machine is an automaton where the input to the automaton, along with

the current state, determines the output (i.e., the page produced by the response) and the

next state. A Mealy machine operates on a finite alphabet of input and output symbols,

while a symbolic Mealy machine uses an infinite alphabet of input and output symbols.

This model of a web application works well because the input to a web application,

along with the current state of the web application, determines the output and the next

state. Consider a simple e-commerce web application with the state machine show in

Figure 4.3. In this state graph, all requests except for the ones leaving a state bring the

application back to the same state. Therefore, this state graph does not show all the

request that can be made to the application, only the subset of requests that change the

state.

For instance, in the initial state S 0, there is only one request that will change

the state of the application, namely POST /login.php. This change logs the user

into the web application. From the state no items, there are two requests that can

90

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

change the state, GET /logout.php which returns the user to the initial state S 0

and POST /add item.php to add an item to the user’s shopping cart.

Note that the graph shown in Figure 4.3 is not a strongly connected graph—that

is, every state cannot be reached by every other state. In this example, purchasing an

item is a permanent action, it irrecoverably changes the state (there is no link from

purchased item to item in cart). Another interesting aspect is that one re-

quest, GET /logout.php, leads to three different states. This is because once the

web application’s state has changed, logging out, and then back in, does not change the

state of the cart.

4.2.2 Inferring the State Machine

Inferring a web application’s state machine requires the ability to detect when the

state of the web application has changed. Therefore, we start with a description of the

state-change detection algorithm, then explain the other components that are required

to infer the state machine.

The key insight of our state-change algorithm is the following: We detect that the

state of the web application has changed when we make an identical request and get a

different response. This is the only externally visible effect of a state-change: Providing

the same input causes a different output.

91

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Using this insight, our state-change detection algorithm works, at a high level, as

follows: (1) Crawl the web application sequentially, making requests based on a link

in the previous response. (2) Assume that the state stays the same, because there is no

evidence to the contrary. (3) If we make a request identical to a previous request and get

a different response, then we assume that some request since the last identical request

changed the state of the web application.

The intuition here is that a Mealy machine will, when given the same input in the

same state, produce the same output. Therefore, if we send the same request and get

a different output, the state must have changed. By detecting the web application’s

state changes only using inputs and outputs, we are agnostic with respect to both what

constitutes the state information and where the state information is located. In this way,

we are more generic than approaches that only consider the database to hold the state

of the application, when in fact, the local file system or even memory could hold part

of the web application’s state.

The state-change detection algorithm allows us to infer when the web application’s

state has changed, yet four other techniques are necessary to infer a state machine: the

clustering of similar pages, the identification of state-changing requests, the collapsing

of similar states, and navigating.

92

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Clustering similar pages. We want to group together pages that are similar, for two

reasons: To handle infinite sections of web applications that are generated from the

same code (e.g., the pages of a calendar) and to detect when a response has changed.

Before we can cluster pages, we model them using the links (anchors and forms)

present on the page. The intuition here is that the links describe how the user can

interact with the web application. Therefore, changes to what a user can do (new or

missing links) indicate when the state of the web application has changed. Also, infinite

sections of a web application will share the same link structure and will cluster together.

With our page model, we cluster pages together based on their link structure. Pages

that are in different clusters are considered different. The details of this approach are

described in Section 4.3.1.

Determining the state-changing request. The state-change detection algorithm only

says that the state has changed, however we need to determine which request actually

changed the state. When we detect a state change, we have a temporal list of requests

with identical requests at the start and end. One of the requests in this list changed the

state. We use a heuristic to determine which request changed the state. This heuristic

favors newer requests over older requests, POST requests over GET requests, and re-

quests that have previously changed the state over those that have never changed the

state. The details are described in Section 4.3.2.

93

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Collapsing similar states. The state-change detection algorithm detects only when the

state has changed, however, we need to understand if we returned to a previous state.

This is necessary because if we detect a state change, we want to know if this is a

state we have previously seen or a brand new state. We reduce this problem to a graph

coloring problem, where the nodes are the states and an edge between two nodes means

that the states cannot be the same. We add edges to this graph by using the requests and

responses, along with rules to determine when two states cannot be the same. After the

graph is colored, states that are the same color are collapsed into the same state. Details

of this state-merging technique are provided in Section 4.3.3.

Navigating. We have two strategies for crawling the web application.

First, we always try to pick a link in the last response. The rational behind choosing

a link in the last response is that we emulate a user browsing the web application. In

this way, we are able to handle multi-step processes, such as previewing a comment

before it is committed.

Second, for each state, we make requests that are the least likely to change the state

of the web application. The intuition here is that we want to first see as much of a state

as possible, without accidentally changing the state, in case the state change is perma-

nent. Full details of how we crawl the web application are provided in Section 4.3.4

94

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

4.3 Technical Details

Inferring a web application’s state machine requires concretely defining aspects

such as page clustering or navigation. However, we wish to stress that this is one

implementation of the state machine inference algorithm and it may not be optimal.

4.3.1 Clustering Similar Pages

Our reason for grouping similar pages together is twofold: Prevent infinite scanning

of the website by grouping the “infinite” areas together and detect when the state has

changed by comparing page responses in an efficient manner.

Page Model

The output of a web application is usually an HTML document (it can actually be

any arbitrary content, but we only consider HTML content and HTTP redirects). An

HTML page is composed of navigational information (anchors and forms) and user-

readable content. For our state-change detection algorithm, we are not interested in

changes to the content, but rather to changes in the navigation structure. We focus on

navigation changes because the links on a page define how a user can interact with the

application, thus, when the links change, the web application’s state has changed.

95

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

/html/body/div/span/a

(0)

/html/body/div/form

/user /post

(5)

edit.phpprofile.php

(all, sorted) (text, email, id)

(5)

(id, page)

(NULL)(0, 1)

Page

Figure 4.4: Representation of a page’s link vectors stored in a prefix tree. There are five

links present on this tree, as evidenced by the number of leaf nodes.

Therefore, we model a page by composing all the anchors and forms. First, every

anchor and form is transformed into a vector constructed as follows:

〈dompath, action, params, values〉

where:

• dompath is the DOM (Document Object Model) path of the HTML link (anchor

or form);

• action is a list where each element is from the href (for anchors) or action

(for forms) attribute split by ‘/’;

96

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

APT

(/html/body/div/span/a, /html/body/div/form) REDIRECT (/html/body/table/div/a)

(/user, /post) /messages (/comments)

(profile.php, edit.php) show.php (all.php)

((id, page), (all, sorted), (text, email, id)) (id) (sorted)

((0), (0, 1), (5), (NULL), (5)) ((5), (5, 3), (1), (YES), (10)) (1) (NULL) (ASC) (DSC) (RAND)

Figure 4.5: Abstract Page Tree. Every page’s link vector is stored in this prefix tree.

There are seven pages in this tree. The page link vector from Figure 4.4 is highlighted

in bold.

• params is the (potentially empty) set of parameter names of the form or anchor;

• values is the set of values assigned to the parameters listed in params.

For instance, an anchor tag with the href attribute of /user/profile.php?id=

0&page might have the following link vector:

〈/html/body/div/span/a, /user, profile.php, (id, page), (0)〉

All link vectors of a page are then stored in a prefix tree. This prefix tree is the model

of the page. A prefix tree for a simple page with five links is shown in Figure 4.4. The

link vector previously described is highlighted in bold in Figure 4.4.

HTTP redirects are handled as a special case, where the only element is a special

redirect element having the target URL as the value of the location attribute.

97

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Page Clustering

To cluster pages, we use a simple but efficient algorithm. As described in the previ-

ous section, the model of a page is a prefix tree representing all the links contained in

the page.

These prefix trees are translated into vectors, where every element of this vector is

the set of all nodes of a given level of the prefix tree, starting from the root. At this

point, all pages are represented by a page link vector. For example, Figure 4.4 has the

following page link vector:

〈(/html/body/div/span/a, /html/body/div/form),

(/user, /post),

(profile.php, edit.php),

((id, page), (all, sorted), (text, email, id)),

((0), (0, 1), (5), (NULL), (5))〉

The page link vectors for all pages are then stored in another prefix tree, called the

Abstract Page Tree (APT). In this way, pages are mapped to a leaf of the tree. Pages

which are mapped to the same leaf have identical page link vectors and are considered

to be the same page. Figure 4.5 shows an APT with seven pages. The page from

Figure 4.4 is bold in Figure 4.5.

However, we want to cluster together pages whose page link vectors do not match

exactly, but are similar (e.g., shopping cart pages with a different number of elements

98

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

in the cart). A measure of the similarity between two pages is how many elements from

the beginning of their link vectors are the same between the two pages. From the APT

perspective, the higher the number of ancestors two pages (leaves) share, the closer

they are.

Therefore, we create clusters of similar pages by selecting a node in the APT and

merging into one cluster, called an Abstract Page, all the leaves in the corresponding

subtree. The criteria for deciding whether to cluster a subtree of depth n from the root

is the following:

• The number of leaves is greater than the median number of leaves of all its sib-

lings (including itself); in this way, we cluster only subtrees which have a larger-

than-usual number of leaves.

• There are at least f(n) leaves in the subtree, where f(n) is inversely related to

n. The intuition is that the fewer ancestors a subtree has in common (the higher

on the prefix tree it is), the more pages it must have to cluster them together. We

have found that the function f(n) = 8(1 + 1

n+1
) works well by experimental

analysis on a large corpus of web pages.

• The pages share the same dompath and the first element of the action list of the

page link vector; in this way, all the pages that are clustered together share the

same link structure with potentially different parameters and values.

99

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

4.3.2 Determine the State-Changing Request

When a state change is detected, we must determine which request actually changed

the web application’s state. Recall that we detect a state change when we make a request

that is identical to a previous request, yet has different output. At this point, we have a

list of all the requests made between the latest request R and the request R′ closest in

time to R such that R is identical to R′. We use a heuristic to determine which request

in this list changed the web application’s state, choosing the request i between R′ and

R which maximizes the function:

score(ni,transition, ni,seen, distancei)

where:

• ni,transition is the number of times the request caused a state transition;

• ni,seen is the number of times the request has been made;

• distancei is how many requests have been made between request R and request

i.

The function score is defined as:

score(ni,transition, ni,seen, distancei) =

1− (1−
ni,transition+1

ni,seen+1
)2 + BOOSTi

distancei+1

100

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

BOOSTi is .2 for POST requests and .1 for GET requests.

We construct the score function to capture two properties of web applications:

1. A POST request is more likely to change the state than a GET request. This

is suggested by the HTTP specification, and score captures this intuition with

BOOSTi.

2. Resistant to errors. Because we cannot prove that the selected request changed

the state, we need to be resistant to errors. That is why score contains the ratio

of ni,transition to ni,seen. In this way, if we accidentally choose the wrong state-

changing request once, but then, later, make that request many times without

changing the state, we are less likely to choose it as a state-changing request.

4.3.3 Collapsing Similar States

Running the state detection algorithm on a series of requests and responses will

tell us when the state has changed. At this point, we consider each state unique. This

initial state assignment, though, is not optimal, because even if we encounter a state

that we have seen in the past, we are marking it as new. For example, in the case of

a sequence of login and logout actions, we are actually flipping between two states,

101

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

instead of entering a new state at every login/logout. Therefore, we need to minimize

the number of different states and collapse states that are actually the same.

The problem of state allocation can be seen as a graph-coloring problem on a non-

planar graph [75]. Let each state be a node in the graph G. Let two nodes a and b

be connected by an edge (meaning that the states cannot be the same) if either of the

following conditions holds:

1. If a request R was made when the web application was in states a and b and

results in pages in different clusters. The intuition is that two states cannot be the

same if we make an identical request in each state yet receive a different response.

2. The two states a and b have no pages in common. The idea is to err on the

conservative side, thus we require that two states share a page before collapsing

the states into one.

After adding the edges to the graph by following the previous rules, G is colored.

States assigned the same color are considered the same state.

To color the nodes of G, we employ a custom greedy algorithm. Every node has

a unique identifier, which is the incremental number of the state as we see it in the

request-response list. The nodes are ordered by identifier, and we assign the color to

each node in a sequential way, using the highest color available (i.e., not used by its

neighbors), or a new color if none is available.

102

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

This way of coloring the nodes works very well for state allocation because it takes

into account the temporal locality of states: In particular, we attempt to assign the

highest available color because it is more likely for a state to be the same as a recently

seen state rather than one seen at the beginning of crawling.

There is one final rule that we need to add after the graph is colored. This rules

captures an observation about transitioning between states: If a request, R, transitions

the web application from state a1 to state b, yet, later when the web application is in

state a2, R transitions the web application to state c, then a1 and a2 cannot be the same

state. Therefore, we add an edge from a1 to a2 and redo the graph coloring.

We continue enforcing this rule until no additional edges are added. The algorithm

is guaranteed to converge because only new edges are added at every step, and no edges

are ever removed.

At the end of the iteration, the graph coloring output will determine the final state

allocation—all nodes with the same color represent the same state (even if seen at

different stages during the web application crawling process).

4.3.4 Navigating

Typical black-box web vulnerability scanners make concurrent HTTP requests to

a web application to increase performance. However, as we have shown, an HTTP

request can influence the web application’s state, and, in this case, all other requests

103

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

would occur in the new state. Also, some actions require a multi-step, sequential pro-

cess, such as adding items to a shopping cart before purchasing them. Finally, a user

of the web application does not browse a web application in this parallel fashion, thus,

developers assume that the users will browse sequentially.

Our scanner navigates a web application by mimicking a user browsing the web

application sequentially. Browsing sequentially not only allows us to follow the de-

veloper’s intended path through the web application, but it enables us to detect which

requests changed the web application’s state.

Thus, a state-aware crawler must navigate the application sequentially. No concur-

rent requests are made, and only anchors and forms present in the last visited page are

used to determine the next request. In the case of a page with no outgoing links we go

back to the initial page.

Whenever the latest page does not contain unvisited links, the crawler will choose

a path from the current page towards another page already seen that contains links that

have not yet been visited. If there is no path from the current page to anywhere, we go

back to the initial page. The criteria for choosing this path is based on the following

intuitions:

• We want to explore as much of the current state as possible before changing the

state, therefore we select links that are less likely to cause a state transition.

104

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

1 def fuzz_state_changing(fuzz_request):

2 make_request(fuzz_request)

3 if state_has_changed():

4 if state_is_reversible():

5 make_requests_to_revert_state()

6 if not back_in_previous_state():

7 reset_and_put_in_previous_state()

8 else:

9 reset_and_put_in_previous_state()

Listing 4.1: Psuedocode for fuzzing state-changing request.

• When going from the current page to a page with an unvisited link, we will repeat

requests. Therefore, we should choose a path that contains links that we have

visited infrequently. This give us more information about the current state.

The exact algorithm we employ is Dijkstra Shortest Path Algorithm [43] with cus-

tom edge length. This edge length increases with the number of times we have previ-

ously visited that link. Finally, the edge length increases with how likely the link is to

cause a state change.

4.4 State-Aware Fuzzing

After we crawl the web application, our system has inferred, as much as possible,

the web application’s state machine. We use the state machine information, along with

the list of request–responses made by the crawler, to drive a state-aware fuzzing of the

web application, looking for security vulnerabilities.

105

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

To fuzz the application in a state-aware manner, we need the ability to reset the web

application to the initial state (the state when we started crawling). We do not use this

ability when crawling, only when fuzzing. It is necessary to reset the application when

we are fuzzing an irreversible state-changing request. Using the reset functionality, we

are able to recover from these irreversible state changes.

Adding the ability to reset the web application does not break the black-box model

of the web application. Resetting requires no knowledge of the web application, and

can be easily performed by running the web application in a virtual machine.

Our state-aware fuzzing starts by resetting the web application to the initial state.

Then we go through the requests that the crawler made, starting with the initial request.

If the request does not change the state, then we fuzz the request as a typical black-

box scanner. However, if the request is state-changing, we follow the algorithm shown

in Listing 4.1. The algorithm is simple: We make the request, and if the state has

changed, traverse the inferred state machine to find a series of requests to transition

the web application to the previous state. If this does not exist, or does not work, then

we reset the web application to the initial state, and make all the previous requests that

the crawler made. This ensures that the web application is in the proper state before

continuing to fuzz.

Our state-aware fuzzing approach can use any fuzzing component. In our imple-

mentation, we used the fuzzing plugins of an open-source scanner, w3af [117]. The

106

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Application Description Version Lines of Code

Gallery Photo hosting. 3.0.2 26,622

PhpBB v2 Discussion forum. 2.0.4 16,034

PhpBB v3 Discussion forum. 3.0.10 110,186

SCARF Stanford conference and research forum. 2007-02-27 798

Vanilla Forums Discussion forum. 2.0.17.10 43,880

WackoPicko v2 Intentionally vulnerable web application. 2.0 900

WordPress v2 Blogging platform. 2.0 17,995

WordPress v3 Blogging platform. 3.2.1 71,698

Table 4.1: Applications that we ran the crawlers against to measure vulnerabilities

discovered and code coverage.

fuzzing plugins take an HTTP request and generate variations on that request look-

ing for different vulnerabilities. Our state-aware fuzzing makes those requests while

checking that the state does not unintentionally change.

4.5 Evaluation

As shown in Chapter 3, fairly evaluating black-box web vulnerability scanners is

difficult. The most important, at least to end users, metric for comparing black-box

web vulnerability scanners is true vulnerabilities discovered. Comparing two scanners

that discover different vulnerabilities is nearly impossible.

There are two other metrics that we use to evaluate black-box web vulnerability

scanners:

• False Positives. The number of spurious vulnerabilities that a black-box web

vulnerability scanner reports. This measures the accuracy of the scanner. False

107

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

positives are a serious problem for the end user of the scanner—if the false pos-

itives are high, the user must manually inspect each vulnerability reported to

determine the validity. This requires a security-conscious user to evaluate the

reports. Moreover, false positives erode the user’s trust in the tool and make the

user less likely to use it in the future.

• Code Coverage. The percentage of the web application’s code that the black-box

web vulnerability scanner executes while it crawls and fuzzes the application.

This measures how effective the scanner is in exercising the functionality of the

web application. Moreover, code coverage is an excellent metric for another

reason: A black-box web vulnerability scanner, by nature, cannot find a vulnera-

bility along a code path that it does not execute. Therefore, greater code coverage

means that a scanner has the potential to discover more vulnerabilities. Note that

this is orthogonal to fuzzing capability: A fuzzer—no matter how effective—will

never be able to discover a vulnerability on a code path that it does not execute.

We use both the metrics previously described in our evaluation. However, our main

focus is on code coverage. This is because a scanner with greater code coverage will

be able to discover more vulnerabilities in the web application.

However, code coverage is not a perfect metric. Evaluating raw code coverage per-

centage numbers can be misleading. Ten percent code coverage of an application could

108

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

be horrible or excellent depending on how much functionality the application exposes.

Some code may be intended only for installation, may be only for administrators, or is

simply dead code and cannot be executed. Therefore, comparing code coverage nor-

malized to a baseline is more informative, and we use this in our evaluation.

4.5.1 Experiments

We evaluated our approach by running our state-aware-scanner along with three

other vulnerability scanners against eight web applications. These web applications

range in size, complexity, and functionality. In the rest of this section, we describe the

web applications, the black-box web vulnerability scanners, and the methodology we

used to validate our approach.

Web Applications

Table 4.1 provides an overview of the web applications used with a short descrip-

tion, a version number, and lines of executable PHP code for each application. Because

our approach assumes that the web application’s state changes only via requests from

the user, we made slight code modifications to three web applications to reduce the

influence of external, non-user driven, forces, such as time.

This section describes the web applications along with the functionality against

which we ran the black-box web vulnerability scanner.

109

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Gallery is an open-source photo hosting application. The administrator can upload

photos and organize them into albums. Guests can then view and comment on the up-

loaded photos. Gallery has AJAX functionality but gracefully degrades (is fully func-

tional) without JavaScript. No modifications were made to the application.

PhpBB v2 is an open-source forum software. It allows registered users to perform

many actions such as create new threads, comment on threads, and message other users.

Version 2 is notorious for the amount of security vulnerabilities it contains [14], and we

included it for this reason. We modified it to remove the “recently online” section on

pages, because this section is based on time.

PhpBB v3 is the latest version of the popular open-source forum software. It is a

complete rewrite from Version 2, but retains much of the same functionality. Similar to

PhpBB v2, we removed the “recently online” section, because it is time-based.

SCARF, the Stanford Conference And Research Forum, is an open-source conference

management system. The administrator can upload papers, and registered users can

comment on the uploaded papers. We included this application because it was used by

previous research [12, 36, 88, 89]. No modifications were made to this application.

Vanilla Forums is an open-source forum software similar in functionality to PhpBB.

Registered users can create new threads, comment on threads, bookmark interesting

threads, and send a message to another user. Vanilla Forums is unique in our test

set in that it uses the path to pass parameters in a URL, whereas all other applica-

110

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

tions pass parameters using the query part of the URL. For instance, a specific user’s

profile is GET /profile/scanner1, while a discussion thread is located at GET

/discussion/1/how-to-scan. Vanilla Forums also makes extensive use of

AJAX, and it does not gracefully degrade. For instance, with JavaScript disabled, post-

ing a comment returns a JSON object that contains the success or failure of the com-

ment posting, instead of an HTML response. We modified Vanilla Forums by setting

an XSRF token that it used to a constant value.

WackoPicko v2 is an open-source intentionally vulnerable web application which was

originally created to evaluate many black-box web vulnerability scanners, and was de-

scribed in Chapter 3. A registered user can upload pictures, comment on other user’s

pictures, and purchase another user’s picture. Version 2 contains minor tweaks from

the original paper, but no additional functionality.

WordPress v2 is an open-source blogging platform. An administrator can create blog

posts, where guests can leave comments. No changes were made to this application.

WordPress v3 is an up-to-date version of the open-source blogging platform. Just like

the previous version, administrators can create blog posts, while a guest can comment

on blog posts. No changes were made to this application.

111

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Scanner Description Language Version

wget GNU command-line website

downloader.

C 1.12

w3af Web Application Attack and Au-

dit Framework.

Python 1.0-stable

skipfish Open-source, high-performance

vulnerability scanner.

C 2.03b

state-aware-scanner Our state-aware vulnerability

scanner.

Python 1.0

Table 4.2: Black-box web vulnerability scanners that we compared.

Black-Box Web Vulnerability Scanners

This section describes the black-box web vulnerability scanners that were compared

against our approach, along with the configuration or settings that were used. Table 4.2

contains a short description of each scanner, the scanner’s programming language, and

the version number.

wget is a free and open-source application that is used to download files from a web

application. While not a vulnerability scanner, wget is a crawler that will make all

possible GET requests it can find. Thus, it provides an excellent baseline because vul-

nerability scanners make POST requests as well as GET requests and should discover

more of the application than wget.

wget is launched with the following options: recursive, download everything, and

ignore robots.txt.

112

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

w3af is an open-source black-box web vulnerability scanner which has many fuzzing

modules. We enabled the blindSqli, eval, localFileInclude, osCommanding, remote-

FileInclude, sqli, and xss fuzzing plugins.

skipfish is an open-source black-box web vulnerability scanner whose focus is on high

speed and high performance. Skipfish epitomizes the “shotgun” approach, and boasts

about making more than 2,000 requests per second to a web application on a LAN.

Skipfish also attempts to guess, via a dictionary or brute-force, directory names. We

disabled this behavior to be fair to the other scanners, because we do not want to test

the ability to guess a hidden directory, but how a scanner crawls a web application.

state-aware-scanner is our state-aware black-box vulnerability scanner. We use Htm-

lUnit [55] to issue the HTTP requests and render the HTML responses. After crawl-

ing and building the state-graph, we utilize the fuzzing plugins from w3af to generate

fuzzing requests. Thus, any improvement in code coverage of our crawler over w3af is

due to our state-aware crawling, since the fuzzing components are identical.

Scanner Configuration

The following describes the exact settings that were used to run each of the evalu-

ated scanners.

• wget is run in the following way:

wget -rp -w 0 --waitretry=0 -nd

--delete-after --execute robots=off

113

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

• w3af settings:

misc-settings

set maxThreads 0

back

plugins

discovery webSpider

audit blindSqli, eval,

localFileInclude, osCommanding,

remoteFileInclude, sqli, xss

• skipfish is run in the following way:

skipfish -u -LV -W /dev/null -m 10

Methodology

We ran each black-box web vulnerability scanner against a distinct, yet identical,

copy of each web application. We ran all tests on our local cloud [102].

Gallery, WordPress v2, and WordPress v3 do not require an account to interact with

the website, thus each scanner is simply told to scan the test application.

For the remaining applications (PhpBB v2, PhpBB v3, SCARF, Vanilla Forums,

and WackoPicko v2), it is difficult to fairly determine how much information to give

the scanners. Our approach only requires a username/password for the application, and

114

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

by its nature will discover the requests that log the user out, and recover from them.

However, other scanners do not have this capability.

Thus, it is reasonable to test all scanners with the same level of information that we

give our scanner. However, the other scanners lack the ability to provide a username

and password. Therefore, we did the next best thing: For those applications that require

a user account, we log into the application and save the cookie file. We then instruct

the scanner to use this cookie file while scanning the web application.

While we could do more for the scanners, like preventing them from issuing the

logout request for each application, we believe that our approach strikes a fair compro-

mise and allows each scanner to decide how to crawl the site. Preventing the scanners

from logging out of the application also limits the amount of the application they will

see, as they will never see the web application from a guest’s perspective.

4.5.2 Results

Table 4.3 shows the results of each of the black-box web vulnerability scanners

against each web application. The column “% over Baseline” displays the percentage of

code coverage improvement of the scanner against the wget baseline, while the column

“Vulnerabilities” shows total number of reported vulnerabilities, true positives, unique

true positives among the scanners, and false positives.

115

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

Scanner Application % over Baseline Vulnerabilities

Reported True Unique False

state-aware-scanner Gallery 16.20% 0 0 0 0

w3af Gallery 15.77% 3 0 0 3

skipfish Gallery 10.96% 0 0 0 0
wget Gallery 0%

state-aware-scanner PhpBB v2 38.34% 4 3 1 1

skipfish PhpBB v2 5.10% 3 2 0 1
w3af PhpBB v2 1.04% 5 1 0 4

wget PhpBB v2 0%

state-aware-scanner PhpBB v3 115.45% 0 0 0 0

skipfish PhpBB v3 60.21% 2 0 0 2

w3af PhpBB v3 16.16% 0 0 0 0

wget PhpBB v3 0%

state-aware-scanner SCARF 67.03% 1 1 1 0

skipfish SCARF 55.66% 0 0 0 0

w3af SCARF 21.55% 0 0 0 0

wget SCARF 0%

state-aware-scanner Vanilla Forums 30.89% 0 0 0 0

w3af Vanilla Forums 1.06% 0 0 0 0

wget Vanilla Forums 0%

skipfish Vanilla Forums -2.32% 17 15 2 2

state-aware-scanner WackoPicko v2 241.86% 5 5 1 0

skipfish WackoPicko v2 194.77% 4 3 1 1

w3af WackoPicko v2 101.15% 5 5 1 0

wget WackoPicko v2 0%

state-aware-scanner WordPress v2 14.49% 0 0 0 0

w3af WordPress v2 12.49% 0 0 0 0
wget WordPress v2 0%

skipfish WordPress v2 -18.34% 1 0 0 1

state-aware-scanner WordPress v3 9.84% 0 0 0 0

w3af WordPress v3 9.23% 3 0 0 3

skipfish WordPress v3 3.89% 1 0 0 1

wget WordPress v3 0%

Table 4.3: Results of each of the black-box web vulnerability scanners against each ap-

plication. The table is sorted by the percent increase in code coverage over the baseline

scanner, wget.

The prototype implementation of our state-aware-scanner had the best code cover-

age for every application. This verifies the validity of our algorithm: Understanding

state is necessary to better exercise a web application.

Figure 4.6 visually displays the code coverage percent improvement over wget. The

most important thing to take from these results is the improvement state-aware-scanner

has over w3af. Because we use the fuzzing component of w3af, the only difference

116

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

-20%

0%

20%

40%

60%

80%

100%

120%

Gallery

PhpBB v2

PhpBB v3

SCARF

Vanilla Forums

WackoPicko v2

WordPress v2

WordPress v3

190%

210%

230%

250%

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t
O

v
er

w
g

et

state-aware-scanner
w3af

skipfish

Figure 4.6: Visual representation of the percentage increase of code coverage over the

baseline scanner, wget. Important to note is the gain our scanner, state-aware-scanner,

has over w3af, because the only difference is our state-aware crawling. The y-axis

range is broken to reduce the distortion of the WackoPicko v2 results.

is in our state-aware crawling. The results show that this gives state-aware-scanner an

increase in code coverage from as little as half a percent to 140.71 percent.

Our crawler discovered three unique vulnerabilities (vulnerabilities that no other

scanner found), one each in PhpBB v2, SCARF, and WackoPicko v2. The SCARF

vulnerability is simply a XSS injection on the comment form. w3af logged itself out

before fuzzing the comment page. skipfish filed the vulnerable page under “Response

varies randomly, skipping checks.” However, the content of this page does not vary ran-

domly, it varies because skipfish is altering it. This random categorization also prevents

skipfish from detecting the simple XSS vulnerability on WackoPicko v2’s guestbook.

117

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

This result shows that a scanner needs to understand the web application’s internal state

to properly decide why a page’s content is changing.

Skipfish was able to discover 15 vulnerabilities in Vanilla Forums. This is impres-

sive, however, 14 stem from a XSS injection via the referer header on an error page.

Thus, even though these 14 vulnerabilities are on different pages, it is the same root

cause.

Surprisingly, our scanner produced less false positives than w3af. All of w3af’s false

positives were due to faulty timing detection of SQL injection and OS commanding.

We believe that using HtmlUnit prevented our scanner from detecting these spurious

vulnerabilities, even though we use the same fuzzing component as w3af.

Finally, our approach inferred the state machines of the evaluated applications.

These state machines are very complex in the large applications. This complexity is

because modern, large, application have many actions which modify the state. For

instance, in WackoPicko v2, a user can log in, add items to their cart, comment on

pictures, delete items from their cart, log out of the application, register as a new user,

comment as this new user, upload a picture, and purchase items. All of these actions

interact to form a complex state machine. The state machine our scanner inferred cap-

tures this complex series of state changes. The inferred WackoPicko v2 state machine

is presented in Figure 4.7.

118

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

4.6 Limitations

Although dynamic page generation via JavaScript is supported by our crawler as

allowed by the HtmlUnit framework [55], proper AJAX support is not implemented.

This means that our prototype executes JavaScript when the page loads, but does not

execute AJAX calls when clicking on links.

Nevertheless, our approach could be extended to handle AJAX requests. In fact, any

interaction with the web application always contains a request and response, however

the content of the response is no longer an HTML page. Thus, we could extend our

notion of a “page” to typical response content of AJAX calls, such as JSON or XML.

Another way to handle AJAX would be to follow a Crawljax [96] approach and covert

the dynamic AJAX calls into static pages.

Another limitation of our approach is that our scanner cannot be used against a

web application being accessed by other users (i.e., a public web application), because

the other users may influence the state of the application (e.g., add a comment on a

guestbook) and confuse our state change detection algorithm.

4.7 Conclusion

We have described a novel approach to inferring, as much as possible, a web appli-

cation’s internal state machine. We leveraged the state machine to drive the state-aware

119

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

fuzzing of web applications. Using this approach, our crawler is able to crawl—and

thus fuzz—more of the web application than a classical state-agnostic crawler. We be-

lieve our approach to detecting state change by differences in output for an identical

response is valid and should be adopted by all black-box tools that wish to understand

the web application’s internal state machine.

120

Chapter 4. A State-Aware Black-Box Web Vulnerability Scanner

385

397

POST /cart/action.php?action=purchase

400

GET /users/logout.php

200

231

POST /cart/action.php?action=purchase

261

POST /comments/add_comment.php

970

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1055

894

POST /cart/action.php?action=purchase

1240

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1157

GET /users/logout.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

899

POST /comments/add_comment.php

290

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

325

POST /cart/action.php?action=purchase

POST /cart/action.php?action=delete

417

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

350

POST /users/login.php
POST /users/register.php

169

POST /comments/add_comment.php POST /cart/action.php?action=purchase

POST /comments/add_comment.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

904

POST /comments/add_comment.php

794

813

POST /comments/add_comment.php

POST /comments/add_comment.php

147

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

780

POST /comments/add_comment.php

POST /comments/add_comment.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

POST /cart/action.php?action=delete

1641

GET /users/logout.php

1248

POST /cart/action.php?action=delete

1328

GET /users/logout.php

1256

GET /users/logout.php

543

POST /comments/add_comment.php

549

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

POST /comments/add_comment.php

424

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

POST /comments/add_comment.php

1536

GET /users/logout.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

857

POST /comments/add_comment.php

879

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

884

POST /comments/add_comment.php

1615

GET /users/logout.php

1389

POST /comments/add_comment.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

889

POST /comments/add_comment.php

GET /users/logout.php

874

POST /comments/add_comment.php

1756

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

POST /comments/add_comment.php

1669

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1725

GET /users/logout.php

GET /users/logout.php

POST /comments/add_comment.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

0

91

POST /passcheck.php

93

POST /users/login.php
POST /users/register.php

523

471

POST /passcheck.php

POST /users/login.php
POST /users/register.php

POST /users/login.php
POST /users/register.php

726

POST /passcheck.php

POST /users/login.php
POST /users/register.php

POST /passcheck.php

POST /users/login.php
POST /users/register.php

POST /users/login.php
POST /users/register.php

POST /passcheck.php

POST /users/login.php
POST /users/register.php

GET /users/logout.php

POST /users/login.php
POST /users/register.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

907

GET /users/logout.php
POST /users/login.php

POST /users/register.php

POST /users/login.php
POST /users/register.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

GET /users/logout.php

POST /users/login.php
POST /users/register.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

GET /users/logout.php

1735

POST /users/login.php
POST /users/register.php

POST /users/login.php
POST /users/register.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1769

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1782

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

Figure 4.7: State machine that state-aware-scanner inferred for WackoPicko v2.

121

Chapter 5

Discovering and Mitigating Execution

After Redirect Vulnerabilities

Now, we turn our attention to the study of a novel class of web application vulner-

abilities called Execution After Redirect. In this chapter, we describe the vulnerability

class and create a tool to statically find Execution After Redirect vulnerabilities in Ruby

on Rails web applications.

An increasing number of services are being offered on-line. For example, banking,

shopping, socializing, reading the news, and enjoying entertainment are all available

on the web. The increasing amount of sensitive data stored by web applications has

attracted the attention of cyber-criminals, who break into systems to steal valuable in-

formation such as passwords, credit card numbers, social security numbers, and bank

account credentials.

122

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

Attackers use a variety of vulnerabilities to exploit web applications. In 2008, Al-

bert Gonzalez was accused and later convicted of stealing 40 million credit and debit

cards from major corporate retailers, by writing SQL injection attacks [74, 109]. An-

other common vulnerability, cross-site scripting (XSS), is the second highest-ranked

entry on the OWASP top ten security risks for web applications, behind injection at-

tacks like SQL injection [107]. Thus, SQL injection and XSS have received a large

amount of attention by the security community. Other popular web application vul-

nerabilities include cross site request forgery (XSRF) [13], HTTP parameter pollution

(HPP) [10, 30], HTTP response splitting [85], and clickjacking [9, 63].

In this chapter, we present an in-depth study of a little-known real-world web applica-

tion logic flaw; one we are calling Execution After Redirect (EAR). An EAR occurs

because of a developer’s misunderstanding of how the web application framework op-

erates. In the normal workflow of a web application, a user sends a request to the web

application. The web application receives this request, performs some server-side pro-

cessing, and returns an HTTP response. Part of the HTTP response can be a notification

that the client (a web browser) should look elsewhere for the requested resource. In this

case, the web application sets the HTTP response code to 301, 302, 303, or 307,

and adds a Location header [51]. These response codes instruct the browser to look

for the resource originally requested at a new URL specified by the web application

123

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

in the HTTP Location header [50]. This process is known as redirection1; the web

application redirects the user to another resource.

Intuitively, one assumes that a redirect should end execution of the server side code;

the reason is that the browser immediately sends a request for the new location as

soon as the redirection response is received, and it does not process the rest of the

web application’s output. Some web frameworks, however, do not halt execution on a

redirect. This can lead to EAR vulnerabilities.

Specifically, an EAR can be introduced when a web application developer writes

code that issues an HTTP redirect under the assumption that the redirect will automat-

ically halt execution of the web application. Depending on the framework, execution

can continue after the call to the redirect function, potentially violating the security

properties of the web application.

We define halt-on-redirect as a web framework behavior where server-side code

execution halts on a redirect, thus preventing EARs. Unfortunately, some languages

make halt-on-redirect difficult to implement, for instance, by not supporting a goto-

type statement. Therefore, web frameworks differ in supporting halt-on-redirect behav-

ior. This difference in redirect method semantics can increase the developer’s confusion

when developing applications in different frameworks.

1In this chapter, we consider only HTTP server-side redirection. Other forms of redirection, executed

on the client, exist such as JavaScript redirect or HTML meta refresh.

124

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

In this chapter, we present a comprehensive study of Execution After Redirect vul-

nerabilities: we provide an overview of EARs and classify EARs into different types.

We also analyze nine web application frameworks’ susceptibility to EARs, specifying

their redirect semantics, as well as detailing what exactly makes them vulnerable to

EARs. Moreover, we develop a novel static analysis algorithm to detect EARs, which

we implemented in an open-source tool to analyze Ruby on Rails web applications.

Finally, we discovered hundreds of vulnerabilities in open-source Ruby on Rails web

applications, with a very low false positive rate.

In summary, this chapter provides the following contributions:

• We categorize EARs and provide an analysis of nine frameworks’ susceptibility

to various types of EARs.

• We discuss the results from the EAR challenge contained within our 2010 Inter-

national Capture the Flag Competition.

• We present an algorithm to statically detect EARs in Ruby on Rails applications.

• We run our white-box tool on 18,127 open-source Ruby on Rails applications,

which found 3,944 EARs.

125

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

5.1 Overview of EARs

An Execution After Redirect vulnerability is a logic flaw in web applications that

results from a developer’s misunderstanding of the semantics of redirection. Very of-

ten this misunderstanding is caused by the web framework used by the developer2. In

particular, developers typically assume that the web application will halt after calling a

function of the web framework that performs a redirect. Certain web frameworks, how-

ever, do not halt execution on a redirect, and instead, execute all the code that follows

the redirect operation. The web browser perpetuates this misunderstanding, as it obedi-

ently performs the redirect, thus falsely indicating that the code is correct. As a result,

when the developer tests the web application using the browser, the observed behavior

seems in line with the intentions of the developer, and, consequently, the application is

assumed to be correct.

Note that an EAR is not a code injection vulnerability; an attacker cannot execute

arbitrary code, only code already present after the redirect. An EAR is also different

from XSS and SQL injection vulnerabilities; it is not an input validation flaw, but rather

a mismatch between the developer’s intentions and the actual implementation.

As an example, consider the EAR vulnerability in the Ruby on Rails code shown

in Listing 5.1. The code appears to redirect the current user to “/” if she is not an

2 This misunderstanding was confirmed by a developer who responded to us when we notified him of

an EAR in his code, who said, “I wasn’t aware at all of this problem because I thought ruby on rails will

always end any execution after a redirect.” This example shows that developers do not always understand

how their web framework handles redirects.

126

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

1 class TopicsController < ApplicationController

2 def update

3 @topic = Topic.find(params[:id])

4 if not current_user.is_admin?

5 redirect_to("/")

6 end

7 @topic.update_attributes(params[:topic])

8 flash[:notice] = "Topic updated!"

9 end

10 end

Listing 5.1: Example of an Execution After Redirect vulnerability in Ruby on Rails.

administrator (Line 5), and, if she is an administrator, @topic will be updated with

the parameters sent by the user in the params variable (Line 7). The code does not

execute in this way, because Ruby on Rails does not support halt-on-redirect behavior.

Thus, any user, not only the administrator, can update the topic, violating the intended

authorization and compromising the security of the web application.

The simple way to fix Listing 5.1 is to add a return after the redirect to

call on Line 5. This will cause the update method to terminate after the redirect,

thus, no additional code will be executed. Adding a return after all redirects is a

good best practice, however, it is insufficient to prevent all EARs. Listing 5.2 depicts

an example of an EAR that cannot be prevented by adding a return after a redirect.

Here, the redirect to on Line 4 is followed by a return, so there is no EAR

in the ensure admin method. However, ensure admin is called by delete on

Line 10, which calls redirect to on Line 4. The return call on Line 5 will re-

turn the control flow back into the delete method, and execution will continue on

127

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

Line 11. Thus, the @user object will still be deleted on Line 12, regardless of whether

the current user is an administrator or not, introducing an EAR. Unfortunately

in some frameworks, the developer cannot simply use exit instead of return to halt

execution after a redirect because the web application is expected to handle multiple

requests. Therefore, calling exit would kill the web application and prevent further

requests.

5.1.1 EAR History

Execution After Redirect vulnerabilities are not a new occurrence; we found 17

Common Vulnerabilities and Exposures (CVE) EAR vulnerabilities dating back to

2007. These CVE entries were difficult to find because EARs do not have a separate

vulnerability type; the EAR CVE vulnerabilities we found3 were spread across different

Common Weakness Enumeration Specification (CWE) types: “Input Validation,” “Au-

thentication Issues,” “Design Error,” “Credentials Management,” “Code Injection,” and

“Permissions, Privileges, and Access Control.” These vulnerabilities types vary greatly,

and this indicates that EARs are not well understood by the security community.

3The interested reader is directed to the following EARs: CVE-2009-2168, CVE-2009-1936, CVE-

2008-6966, CVE-2008-6965, CVE-2008-0350, CVE-2007-6652, CVE-2007-6550, CVE-2007-6414,

CVE-2007-5578, CVE-2007-4932, CVE-2007-4240, CVE-2007-2988, CVE-2007-2776, CVE-2007-

2775, CVE-2007-2713, CVE-2007-2372, and CVE-2007-2003.

128

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

1 class UsersController < ApplicationController

2 def ensure_admin

3 if not current_user.is_admin?

4 redirect_to("/")

5 return

6 end

7 end

8

9 def delete

10 ensure_admin()

11 @user = User.find(params[:id])

12 @user.delete()

13 flash[:notice] = "User Deleted"

14 end

15 end

Listing 5.2: Example of a complex Execution After Redirect vulnerability in Ruby on

Rails.

5.1.2 EARs as Logic Flaws

While logic flaws are typically thought of as being unique to a specific web ap-

plication, we believe EARs are logic flaws, even though they are systemic to many

web applications. Because an EAR is the result of the developer’s misunderstanding of

the web application framework, there is an error in her logic. The intuition is that the

redirect is an indication of the developer’s intent for ending server-side processing. A

redirect can be thought of as a goto - the developer, in essence, wishes to tell the user

to look somewhere else. However, it does not act as a goto, because the server-side

control flow of the application is not terminated, even though that is how it appears

from the perspective of the client.

129

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

There are almost no valid reasons to have code executed after a redirect method.

The few exceptions are: performing cleanup actions, such as closing open files, and

starting long-running processes, such as encoding a video file. In the former case, the

cleanup code can be executed before a redirect, and in the latter case, long-running

processes can be started asynchronously, alleviating the need to have code executed

after a redirect.

Because there is no reason to execute code after a redirect, we can infer that the

presence of code executed after a redirect is a logic flaw.

5.1.3 Types of EARs

Execution After Redirect logic flaws can be of two types: benign or vulnerable.

A benign EAR is one in which no security properties of the application are violated,

even though additional, unintended, code is executed after a redirect. For example, the

code executed after the redirect could set a local variable to a static string, and the local

variable is not used or stored. Although no security properties are violated, a benign

EAR may indicate that a developer misunderstood the redirect semantics of the web

framework, posing the risk that code will, in the future, be added after the redirect,

elevating the EAR from benign to vulnerable.

A vulnerable EAR occurs when the code executed after the redirect violates the

security properties of the web application. More specifically, in a vulnerable EAR

130

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

1 $current_user = get_current_user();

2 if (!$current_user->is_admin())

3 {

4 header("Location: /");

5 }

6 echo "Sensitive Information";

Listing 5.3: Example of an information leakage Execution After Redirect vulnerability

in PHP. If the current user is not an administrator, the PHP header function will

be called, redirecting the user to “/”. However, the sensitive information will still be

returned in the output, thus leaking information. The fix is to call the exit function

after the header call.

the code executed after the redirect allows unauthorized modification to the state of the

web application (typically the database), and/or causes leakage (reads and returns to the

browser) of data to an unauthorized user. In the former case (e.g., see Listing 5.1), the

integrity of the web application is compromised, while in the latter case, the confiden-

tiality of the web application is violated (e.g., see Listing 5.3). Thus, every vulnerable

EAR is an instance of broken/insufficient access controls, because the redirect call is

an indication that the user who made the request is not allowed to access the requested

resource.

EAR vulnerabilities can be silent. In a silent EAR, the execution of code does not

produce any output. This lack of information makes silent EARs difficult to detect

via a black-box approach, while information leakage EARs are easier to detect with

black-box tools. Listings 5.1 and 5.2 are examples of silent EARs, and Listing 5.3 is an

example of an information leakage EAR.

131

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

5.1.4 Framework Analysis

Web application frameworks vary on supporting halt-on-redirect behavior. There-

fore, different frameworks provide protection against different kinds of EAR vulnera-

bilities. The differing semantics of redirects increases the confusion of developers. A

developer we contacted said, “I didn’t realize that [Ruby on Rails’] redirect to was like

PHP’s header redirect and continued to run code.” Thus, an understanding of the web

framework’s redirect semantics is essential to produce correct, EAR-free, code.

We analyzed nine of the most popular web frameworks to see how they differ with

respect to their built-in redirect functions. The nine frameworks were chosen based on

their StackOverflow activity, and include one framework for each of the Ruby, Groovy,

and Python languages, three frameworks for the PHP language, one framework that can

be applied to both C# and Visual Basic, and two frameworks for the Java language [22].

While the frameworks selected for analysis are not exhaustive, we believe they are

diverse and popular enough to be representative of real-world usage.

To analyze the frameworks, we created nearly identical copies of a simple web

service in each of the nine web frameworks. This web service provided access to four

pages within the web application. The first was the root page, “/”, which simply linked

to the other three pages. The second was the redirect page, “/redirect”, which was used

to test proper redirect behavior. The third was the EAR page, “/ear”, which called the

framework’s redirect function, appended a message to a log file regarding the request,

132

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

and finally attempted to return a rendered response to the browser. The last page was

the log page, “/log”, which simply displayed the contents of the log file.

Using this design for the web application allowed us to check for integrity viola-

tions, represented by the appended log message, and confidentiality violations, repre-

sented by output sent after the HTTP redirect response when requesting the EAR page.

We approached the implementation of this web application in each framework as many

developers new to that framework would. That is, whenever possible, we followed the

recommended tutorials and coding practices required to build a web application in the

framework.

A brief background on the model-view-controller (MVC) software architecture is

necessary to follow our analysis, as each framework analyzed fits the MVC pattern. The

MVC architecture supports the separation of the persistent storage (model), the user

interface (view), and the control flow (controller) [116]. More precisely, the models

interact with the database, the views specify the output to return to the client, and the

controllers are the glue that puts everything together. The controller must handle HTTP

requests, fetch or update models, and finally return a view as an HTTP response. When

following the MVC paradigm, a controller is responsible for issuing a redirect call.

The following sections describe our analysis of each framework’s susceptibility to

EAR vulnerabilities based on their redirect functions’ use and documentation. We de-

veloped the test application in the latest stable version of each framework available at

133

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

the time. The version numbers are listed adjacent to the framework name in the section

headers.

Ruby on Rails 3.0.5

Ruby on Rails, commonly referred to as Rails, is a popular web application frame-

work. Unfortunately, Rails is susceptible to EAR vulnerabilities. Rails provides the

redirect to function, which prepares the controller for sending the HTTP redirect.

However, the redirect is not actually sent at this point, and code continues to execute

following the call to redirect to. In Rails, there is no mechanism to ensure that

code halts following a redirect, thus if exit is called, a developer must return from the

controller’s entry function without executing additional code.

As previously mentioned in Section 5.1, the Ruby exit command cannot be used

to halt the execution of a controller after a redirect. This is for two reasons: the first is

that redirect to does not immediately send output when it is called, thus if exit

is called, the user will never see the redirect. The second reason is that Rails web

applications are long-running processes that handle multiple incoming requests, unlike

PHP, which typically spawns a new instance for each request. Therefore, calling exit

to halt execution is not feasible, as it will terminate the Rails application, preventing it

from handling further requests.

134

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

On a positive note, information leakage EARs are impossible in Rails web ap-

plications because a controller can either perform a redirect, or render a response

(view) to the user. Any call to render after a redirect will result in Rails throwing a

DoubleRenderError. This exception is thrown in all possible combinations: ren-

der after a redirect, render after a render, redirect after a render, and redirect after a

redirect.

Grails 1.3.7

Grails is a framework written in Groovy, which was modeled after the Ruby on Rails

framework. Thus, Grails behaves in a manner nearly identical to Rails with respect to

redirects. Specifically, code will continue to execute following a call to the redirect

function, and, therefore, the developer must take precautions to avoid creating an EAR

vulnerability. Unfortunately, as of this writing, nowhere in the Grails documentation on

redirects does it mention that code will continue to execute following a redirect [130].

Unlike Ruby on Rails, the behavior of Grails is somewhat less predictable when it

comes to the order of view rendering and/or calls to redirect. To explain, we will say

that to “render” means to output a view, and to “redirect” means to call the redirect

function. As previously mentioned in Section 5.1.4, in Rails, only one render or one

redirect may be called in a controller; a DoubleRenderError is thrown in the case

of multiple calls. In Grails, however, the only redirect exception, CannotRedirect-

135

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

Exception, occurs when a redirect is called following another redirect. In cases

where multiple calls to render are made, the final render is the only one that is sent

to the browser. More importantly, in cases where both redirect and render are called,

regardless of their order, the redirect is actually sent to the browser and the render call

is simply ignored. Due to this behavior of Grails, it is not vulnerable to an information

leakage EAR. However, like Rails, it is still vulnerable to silent EARs that violate the

integrity of the application.

Django 1.2.5

Django is a Python web application framework that differs in its handling of redi-

rects compared to the other frameworks (save for ASP.NET MVC). Rather than call-

ing functions to render or perform the redirect, Django requires the developer to re-

turn an HttpResponse object from each controller. Django’s documentation makes

it clear that calling Django’s redirect function merely returns a subclass of the

HttpResponse object. Thus, there is no reason for the developer to expect the code

to halt when calling redirect. The actual HTTP redirect is sent to the browser

only if this object is also returned from the controller’s entry point, thereby removing

the possibility of further code execution [45]. Because the controller’s entry point can

only return a single HttpResponse object, the developer can rely completely on her

browser for testing purposes. This behavior makes Django impervious to all EARs.

136

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

ASP.NET MVC 3.0

ASP.NET MVC is a web application framework developed by Microsoft that adds

a Model-View-Controller paradigm on top of traditional ASP.NET, which includes the

languages C# and Visual Basic [7]. ASP.NET MVC is similar to Django, in that all

controllers must return an ActionResult object. In order to perform redirection, ei-

ther a RedirectResult or RedirectToRouteResult object must be returned,

which are both subclasses of ActionResult. Like Django, this behavior makes

ASP.NET MVC impervious to all EARs.

Zend Framework 2.3

By default, the PHP based Zend Framework is not susceptible to EAR vulnerabil-

ities because its redirect methods immediately result in the termination of server-side

code. This default behavior is consistent in the two methods used to perform a redirect

in the Zend Framework. The simplest method is by using the redirect method of

the controller, however, the recommended method is to use the Redirector helper

object [147].

While the default behavior is not vulnerable to EARs, the Zend Framework sup-

ports disabling halt-on-redirect for both methods. The redirect method will not

halt when the keyword argument exit=False is provided as part of the call. Dis-

abling halt-on-redirect when using the Redirector helper object requires calling the

137

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

method SetExit(False) on the Redirector helper object prior to making the

redirect call. The latter method is particularly interesting because any code executed

during the request has the ability to modify the behavior of redirects called using the

Redirector helper. Fortunately, even when using the Redirector helper, the de-

veloper has the option of using a set of functions suffixed with “AndExit” that always

halt-on-redirect.

When halt-on-redirect is disabled in Zend, it becomes vulnerable to integrity vio-

lation EARs. However, the default view rendering behavior no longer occurs. Thus,

even when modifying the default behavior, information leakage EARs will never occur

in the Zend Framework.

CakePHP 1.3.7

Similar to the Zend Framework, the CakePHP framework is also not susceptible

to EAR vulnerabilities out of the box. By default, CakePHP’s single redirect method

immediately results in the termination of the PHP script. In a manner similar to the

Zend Framework, this default behavior can be modified by setting the third argument

of redirect to False, which in turn also disables the default mechanism for view

rendering [29]. Thus CakePHP is vulnerable to EARs in exactly the same way as the

Zend Framework.

138

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

CodeIgniter 2.0.0

Unlike the Zend Framework and CakePHP, CodeIgniter is a very lightweight PHP

framework, and thus, it does not offer much out of the box. Nevertheless, the framework

still provides a url helper class that contains a redirect method [47]. CodeIgniter’s

redirect method always exits after setting the redirect header; a behavior that cannot

be changed. Therefore CodeIgniter is impervious to EARs when developers use only

the provided redirect function. Unfortunately, the url helper class must be included

manually. As a result, there is the risk that developers will not use the provided redirect

function and instead introduce EARs by neglecting to call exit following a call to

header("Location:<path>").

J2EE 1.4

Java 2 Platform, Enterprise Edition (J2EE) defines a servlet paradigm for the devel-

opment of web applications and web application frameworks in Java. Thus, to perform

a redirect in J2EE, or a J2EE-based framework, the developer calls HttpServlet-

Response.sendRedirect. This redirect function will clear out everything previ-

ously in the output buffer, set the Location header to the redirect location, set the

response code to 302, and finally flushes the output buffer to the browser. However,

sendRedirect does not halt execution of the servlet. Thus, only silent EARs are

present in J2EE web applications, or any framework that is based on J2EE servlets.

139

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

Struts 2.2.3

Apache Struts is an MVC framework that is built on top of the servlet model pro-

vided by J2EE. Thus, Struts inherits all the potential vulnerabilities of the J2EE frame-

work, specifically that silent EARs are possible but information leakage EARs are

not possible. This inheritance is possible because to perform a redirect, the Http-

ServletResponse.sendRedirectmethod of J2EE must be called.

5.1.5 EAR Security Challenge

Each year since 2003, we have organized and hosted a security competition called

the International Capture the Flag (iCTF). The competition pits dozens of teams from

various universities across the world against each other in a test of their security skills

and knowledge. While each iCTF has a primary objective, the competitions typically

involve secondary security challenges tangential to the primary objective [32].

For the 2010 edition of the iCTF, we constructed a security challenge to observe

the familiarity of the teams to Execution After Redirect vulnerabilities. The challenge

involved a vulnerable EAR that violated both the confidentiality and the integrity of the

web application. The confidentiality was violated when the web application’s admin-

istrator view was leaked to unauthorized users following a redirect; the unauthorized

users were “correctly” redirected to an error page. The information contained in the

leaked view provided enough information to allow for an integrity violation had the

140

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

database not purposefully been in a read-only state. More importantly, the initial data

leak provided the means to leak further information, thus allowing teams to successfully

solve the challenge [21].

The crux of the EAR challenge relied on the automatic redirecting of web browsers

and other web clients, such as wget and curl. To our surprise, many of the teams

relied only on the output produced by their web browser, and, therefore, failed to notice

the leaked information. It is important to note that the teams in this competition are pri-

marily made up of graduate and undergraduate level students from various universities;

many would not be considered security professionals. Nevertheless, we assumed that

the meticulous eye of a novice-to-intermediate level hacker attempting to break into a

web service would be more likely to detect information leakage when compared to a

web developer testing their application for “correct” page flow.

Of the 72 teams in the competition, 69 contacted the web server at least once. 44 of

these 69 teams advanced past the first step, which required them to submit a file as per

the web application’s specifications. 34 of the 44 teams advanced past the second step,

which required them to brute force a two-digit password. It was at this point that the

EAR vulnerability was exposed to the teams, resulting in both a redirect to the unautho-

rized error page and the leakage of the administrator page as part of the HTTP redirect

response. Of the 34 teams who made it this far, only 12 successfully discovered and

exploited the vulnerability. The fact that only 12 out of 34 teams were successfully able

141

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

to discover the information leaked to their browser in a hacking competition indicated

that more research and exposure was necessary for EAR vulnerabilities.

5.2 EAR Detection

In this section, we discuss the design and implementation of our system to detect

EAR vulnerabilities. This system uses static source code analysis to identify cases in

which code might be executed after the call to a redirect function. We also introduce a

heuristic to distinguish benign EARs from vulnerable EARs.

Our tool targets the Ruby language, specifically the Ruby on Rails web framework.

We chose this framework for two reasons. First, Ruby on Rails is a very popular web

framework, thus, there is a large number of open-source Ruby on Rails web applica-

tions available for inspection (e.g., on GitHub [57]). Second, due to the characteristics

discussed in Section 5.1.4, all EARs present in Rails are silent. Thus, it is necessary

to use a white-box tool to detect EARs in Ruby on Rails web applications. Again, it

is important to note that redirects originate within the controllers4, thus, our white-box

tool operates specifically on controllers.

142

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

1) Build CFG

 Rails Application

2) Find Redirection Methods

 CFG

3) Prune Infeasible Paths

 CFG, interesting methods

4) Detect EARs

 CFG, interesting methods

5) Classify as Vulnerable

 EARs

 Benign EARs, Vulnerable EARs

Figure 5.1: The logical flow of the white-box tool.

5.2.1 Detection Algorithm

The goal of our EAR detector is to find a path in the controller’s Control Flow Graph

(CFG) that contains both a call to a redirect method and code following that redirect

method. An overview of our algorithm is given in Figure 5.1. The algorithm operates

in five steps: (i) generate the CFG of the controller; (ii) find redirection methods; (iii)

prune infeasible paths in the CFG to reduce false positives; (iv) detect EARs by finding

a path in the CFG where code is executed after a redirect method is called; (v) use a

heuristic to differentiate between benign and vulnerable EARs.

4Redirects can also occur in Rails’ routing, before the request gets to the controller. However, EARs

cannot occur in this context, because control flow never reaches a controller. Thus, we are not concerned

with these redirects.

143

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

Step 1: Building the Control Flow Graph

We built our system on top of the Ruby parser presented by Furr et al. [54]. This parser

first compiles Ruby into a subset of the Ruby language called Ruby Intermediate Lan-

guage, or RIL. The purpose of RIL is to simplify Ruby code into an easier-to-analyze

format. The simplification is performed by removing ambiguities in expressions, re-

ducing Ruby’s four different branches to one canonical representation, making method

calls explicit, and adding explicit returns. At the end of the transformation, every state-

ment in RIL is either a statement with one side effect or a branch. The parser generates

the CFG of RIL.

Due to Ruby’s dynamic nature, this CFG might be incomplete. In particular, strings

containing Ruby code can be evaluated at run-time using the eval function, object

methods can be dynamically called at run-time using the send function, and methods

can be added to objects at run-time. We do not address EAR vulnerabilities associated

with these language features. However, we have found that these features are rarely

used in practice (see Section 5.2.2).

Step 2: Finding Redirection

To detect EARs, we must first find all program paths (from any program entry to any

program exit point) in the CFG that call the Ruby on Rails method redirect to.

The reason is that we need to check these paths for the presence of code execution

144

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

between the redirect call and the program exit point. Note that intra-procedural analysis

is not enough to find all EARs. Consider the code in Listing 5.2. Simply looking in

ensure admin for code execution after the call to redirect to and before the

end of this method is not sufficient. Thus, we need to perform inter-procedural analysis

to find all possible ways in which code execution can continue after a redirect to

call until the end of the program.

Our inter-procedural analysis proceeds as follows: we start by finding all methods

that directly call redirect to. These methods are added to a set called interesting

methods. Then, for each method in the interesting methods set, we add to this set all

methods that call it. This process is iterated until a fixpoint is reached, and no new

interesting methods are found.

At this point, every element (method) in interesting methods can eventually lead

to a redirect to call. Whenever a call to an interesting method returns, its execu-

tion will continue after the call site in the caller. Thus, all paths from invocations of

redirect to until the end of the program are captured by the paths from all invo-

cations (call sites) of interesting methods to the end of the methods that contain these

calls. Now, to detect an EAR, we can simply look for code that is executed on a path

from the call site of an interesting method until the end of the method that contains this

call.

145

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

1 class UsersController < ApplicationController

2 def ensure_logged_in

3 if not current_user

4 redirect_to("/") and return false

5 end

6 @logged_in_users += 1

7 return true

8 end

9

10 def delete_all

11 if not ensure_logged_in()

12 return

13 User.delete(:all)

14 end

15 end

Listing 5.4: Example of a potential false positive.

Step 3: Prune Infeasible Paths

Looking for all paths from the redirect to method to the program exit point might

lead to false positives due to infeasible paths. Consider the example in Listing 5.4.

There are no EARs in this code. The redirect to on Line 4 will always return

true, thus, return false (also on Line 4) will execute as well. Because of this,

ensure logged in will always return false after performing a redirect. As a

result, the call to ensure logged in on Line 11 will always return false, and the

return on Line 12 will always occur.

The CFG for the code in Listing 5.4 is shown in Figure 5.2. With no additional

processing, we would incorrectly report the path from redirect to on Line 4 to

the statement in Line 6. Moreover, we would also report an EAR because of the path

146

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

delete_all

tmp = ensure_logged_in()

_ tmp_

ensure_logged_in

User.delete(:all)

 true (2)

return

 false

return

 (2)

current_user

redirect_to("/")

 false

@logged_in_users + = 1

 true

return false

 true false (1)

return true

 (1)

 (1)

Figure 5.2: Control Flow Graph for the code shown in Listing 5.4. The dotted lines are

paths removed from the CFG by Step 3 of the EAR detection algorithm.

from the redirect to the User.delete on Line 13. The first path is denoted as (1) in

Figure 5.2, the second path as (2).

To prune infeasible paths in the CFG, we explore all paths that follow an interesting

method. If all paths following an interesting method call return the same Boolean

value, we propagate this Boolean constant to all the call sites of this method. Then, we

recursively continue constant value propagation at all the call sites, pruning infeasible

paths everywhere after the interesting method is called. We iteratively continue this

147

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

process throughout the CFG; whenever we find a constant return value, we propagate

this return value to all call sites.

Figure 5.2 shows the results of performing our pruning process on the CFG of List-

ing 5.4. Initially, all paths after the redirect to in ensure logged in do not

return the same Boolean, so we cannot conclude anything about the return value of

ensure logged in. However, redirect to always returns true. Therefore,

we perform constant value propagation on the return value of redirect to, which

is used in a branch. As a consequence, we can prune all of the paths that result from

the false branch. The edges of this path are labeled with (1) in Figure 5.2. Now, all

paths from redirect to return false, which means that ensure logged in

will always return false after a redirect. We now perform constant value propagation

at all the call sites of ensure logged in, removing all the paths labeled with (2).

At this point, there is nothing more to be pruned, so we stop. It can be seen that there

is no path from redirect to to state-changing code (defined in the next step) along

the solid lines.

Step 4: Detecting EARs

Once the CFG of the controller has been simplified and interesting method information

has been extracted, we perform EAR detection. This is a fairly simple process; we

traverse the CFG of every method to see if potentially problematic code can be exe-

148

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

cuted after a call to an interesting method. We conservatively define such code as any

statement that could possibly modify the program state, excluding statements that alter

the control flow. This excludes return and branches, but includes assignment and

method calls. As a special case, we also disregard all operations that set the flash or

session array variable. These arrays are used in the former case to set a message to

be displayed on the destination page, and in the latter case to store some information

in the user’s session. These calls are disregarded because they do no affect the state of

the web application and are frequently called after redirection. We report as a potential

EAR each method that executes potentially problematic code between the invocation

of an interesting method and its return statements.

Step 5: Distinguishing Between Benign and Vulnerable EARs

We also introduce a heuristic to identify vulnerable EARs. This heuristic looks for paths

from an interesting method to a function that modifies the database. If one is found,

the EAR is marked as vulnerable. We used the Rails documentation to determine the

16 functions that modify the database. Of course, this list can be easily extended.

This process is not sound, because we perform no type analysis, and look only at the

method names being called. Moreover, we do not analyze the models, only looking

for this specific list. Despite these limitations, our results (Section 5.3.1) show that

149

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

this heuristic is still a good indicator of potentially vulnerable EARs that deserve the

developer’s attention.

5.2.2 Limitations

The white-box EAR detector is limited to analyzing Ruby on Rails applications, al-

though the detection algorithm can be extended to any programming language and web

framework. Detection is neither sound nor complete. False negatives can occur when

a Rails application uses Ruby’s dynamic features such as eval or send to execute a

redirect. While such dynamic features are used extensively in the Ruby on Rails frame-

work itself, they are rarely used by web applications written in Rails. Of the 3,457,512

method calls in controllers that we tested our tool on, there were 428 (0.012%) eval

method calls and 2,426 (0.07%) send method calls, which shows how infrequently

these are used in Rails web applications.

The white-box tool can report two types of false positives: false EARs, that is,

the tool reports an EAR although no code can be executed after a redirect, or false

vulnerable EARs, where the tool mistakes a benign EAR as vulnerable.

False EARs can occur for several reasons. One reason is that the path from the

redirect function to the code execution that we found is infeasible. A typical example is

when the redirect call and the code execution occur in opposite branches. The branch

conditions for these are mutually exclusive, so there can never be a path from the redi-

150

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

Type of EAR reported Number reported

Benign 3,089

Vulnerable 855

Total 3,944

Total Projects 18,127

Any EAR 1,173

Only Benign 830

At least one vulnerable EAR 343

Table 5.1: Results of running the white-box detector against Ruby on Rails applications,

6.5% of which contained an EAR flaw. 2.9% of the projects had an EAR classified as

vulnerable.

rect call to the code execution. Examples of this type of false positive are discussed in

Section 5.3.1, and these could be mitigated by introducing better path sensitivity.

False vulnerable EARs are a problem caused by the heuristic that we use. The

biggest issue is that we simply look for method calls that have the same name as method

calls that update/change the database. However, we do not perform any type analysis

to determine the object that the method is called on. Thus, methods such as delete

on a hash table will trigger a false vulnerable EAR, since delete is also a method of

the database object. Improved heuristics could be developed, for instance, that include

the type of the object the method is being invoked on.

Despite these limitations, our experiments demonstrate that the tool works very

well in practice. In addition, Ruby on Rails controllers are typically very small, as most

application logic is present in the models. Thus, our tool works very well on these types

151

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

of controllers. We provide5 our tool to the community at large, so that others may use

it to detect EARs in their code.

5.3 Results

We used our EAR detection tool to find real-world EARs in open-source Ruby

on Rails web applications. First, we downloaded 59,255 open-source projects from

GitHub [57] that were designated as Ruby projects and that were not a fork of an-

other project. We identified 18,127 of the downloaded Ruby projects that had an

app/controllers folder, indicating a Ruby on Rails application.

Table 5.1 summarizes the results. In total, we found 3,944 EAR instances in 1,173

projects. 855 of these EARs, present in 343 projects, were classified as vulnerable by

our system. This means that 6.5% of Rails applications we tested contained at least

one EAR, and 29.3% of the applications containing EARs had an EAR classified as

vulnerable.

Of the 1,173 projects that contained at least one EAR, we notified those project

owners that had emails listed in their GitHub profile, for a total of 624. Of these project

owners, 107 responded to our email. Half of the respondents, 49, confirmed the EARs

we reported. 26 other respondents told us that the GitHub project was no longer being

maintained or was a demo/toy. Three respondents pointed out false positives, which we

5https://github.com/adamdoupe/find_ear_rails

152

https://github.com/adamdoupe/find_ear_rails

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

Classification after manual analysis Number

True Vulnerable EARs 485

Benign EARs 325

No EARs (False Positives) 45

Table 5.2: Results of manually inspecting the 855 vulnerable EARs reported by our

white-box tool. 40.1% were benign, and 5.3% were not EARs.

confirmed, while 6 of the project owners said that there were not going to fix the EAR

because there was no security compromise. The rest of the responses thanked us for the

report but did not offer a confirmation of the reported EAR.

5.3.1 Detection Effectiveness

To determine the effectiveness of our tool, we manually inspected all 855 vulnera-

ble EARs. The results are shown in Table 5.2. We manually verified that 485, or 59.9%,

were true positives. Many of these were caused by ad-hoc authorization checks, where

the developer simply introduced a redirect when the check failed. Some examples of

security violations were allowing non-administrators access to administrator function-

ality, allowing modifications to items not belonging to the current user, and being able

to sign up for a conference even though it was full.

Listing 5.5 shows an interesting example adapted from a real EAR where the redi-

rect is followed by and return (Line 3), however, due to Ruby’s semantics, this

code contains an EAR. In Ruby, a return with no arguments returns false6, thus,

6Technically nil, but nil and false are equivalent for Boolean comparisons.

153

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

1 class BanksController < ApplicationController

2 def redirect_to_login

3 redirect_to("/login") and return

4 end

5

6 def create

7 if not current_user.is_admin?

8 redirect_to_login() and return

9 end

10 @bank = Bank.create(params[:bank])

11 end

12 end

Listing 5.5: True positive Execution After Redirect vulnerability in Ruby on Rails.

redirect to login will always return false (because of the return call with

no arguments on Line 3). The result is that the return on Line 8 will never be exe-

cuted, because redirect to loginwill always return false, and the short-circuit

logic of and will cause Line 10 to be executed. This example shows that our tool dis-

covers non-obvious EARs.

For vulnerable EARs, we consider two different types of false positives: false vul-

nerable EARs, which are benign EARs mistakenly reported as vulnerable, and false

EARs (false positives).

As shown in Table 5.2, the white-box tool generated 45 false EARs, for a false

positive rate of 5.3%. These false positives came from two main categories. About

half of the false positives were due to impossible paths from the redirect methods to

some code. An example of this is when a redirect method was called at the end of a

branch that checked that the request was an HTTP GET, while the code executed after

154

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

a redirect was in a branch that checked that the request was an HTTP POST. These two

conditions are mutually exclusive, thus, this path is impossible. The other half of false

positives were due to local variables that had the same name as a redirect method. The

parsing library, RIL, mistakenly identified the local variable access as a method call to

a redirect method. We are currently looking into fixing this issue in RIL, which will

almost halve our false positive rate.

While our false EAR rate was only 5.5%, our vulnerable EAR detection heuristic

had a higher false detection rate of 40.1%. The biggest culprit for false vulnerable EARs

(72.9% of the instances) was due to no feasible path from the redirect to the method that

changed the state of the database. For instance, the redirect method occurred in a branch

that was taken only when a certain object was nil7. Later, the database method was

called on this object. Thus, when the redirect happens, the object will be nil. Because

of the presence of an EAR flaw, execution will continue and reach the database access

method. However, since the object is nil, the database will not be affected. Because

our heuristics cannot detect the fact that, after the redirect, the database function will

always be called with a nil object, we report a vulnerability. The other common

false vulnerable EAR were instances where the redirect method was called before code

was executed, however, it was clear that the developer was fully aware of the redirect

semantics and intended for the code to be executed.

7nil is Ruby’s null.

155

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

We also checked that the false EAR rate did not differ significantly among the be-

nign EARs by manually inspecting 200 random EARs reported as benign. We saw 13

false EARs in the manual inspection, for a false positive rate of 6.5%. Thus, the total

false positive rate among the instances we manually inspected is 5.5%. We also did

not see any vulnerable EARs among the benign EARs, thus, we did not see any false

negative vulnerable EARs in our experiments.

From our results, we can conclude that we detect EARs well. However, it is more

difficult to distinguish between benign and vulnerable EARs. Classification could be

improved by using a better heuristic to detect intended redirects. However, even though

certain EARs might not be vulnerable at the moment, they are still programming errors

that should be fixed. This is confirmed by the responses that we received from devel-

opers who were grateful for error reports even though they are not exploitable at the

moment. Also, our tool reports one true vulnerability for every benign EAR mistak-

enly classified as vulnerable. This is well in line with the precision of previous static

analysis tools [72, 79, 92].

5.3.2 Performance

To evaluate the performance of our tool, we measured the running time against the

18,127 Ruby on Rails applications. We ran our experiments on an Intel Core i7 with

12 gigabytes of RAM. Our algorithm scales linearly with the size of the CFG and is

156

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

fast; no project took longer than 2.5 seconds even with the largest CFG size of 40,217

statements.

5.4 Prevention

The old adage “an ounce of prevention is worth a pound of cure” is true in soft-

ware. Boehm showed that the later in an application’s life-cycle bugs are caught, the

more expensive they are to fix [23]. Thus, preventing certain types of bugs from even

being introduced is attractive from both an economic standpoint, and a security per-

spective. Our recommendation to web frameworks, therefore, is to make Execution

After Redirect vulnerabilities impossible to occur, by having every invocation of the

redirect method halt execution, which we call halt-on-redirect behavior.

As we have shown in Section 5.1.4, some frameworks have already either adopted

the approach of making EARs impossible, or their approach to generating HTTP re-

sponses makes EARs highly unlikely. For existing frameworks that wish to decrease

the chance of EARs being introduced, such draconian measures may not be acceptable

because they break backward-compatibility. Our suggestion in these cases is to make

an application-wide setting to enable halt-on-redirect behavior, along with an argument

to the redirect function to halt execution after the redirect. Of course, we suggest mak-

157

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

ing halt-on-redirect the default behavior, however each framework will have to properly

balance security and backward-compatibility.

To improve the security of Ruby on Rails, we are in discussions with the Rails

development team about our proposed change. The difficulty with implementing halt-

on-redirect behavior in Rails is that there are no gotos, and Rails applications run in

a single-threaded context. This limits the two obvious forms of implementing halt-on-

redirect: we cannot use a goto or language equivalent statement to jump from the end of

the redirect to method to the code after the controller is called. Moreover, we also

cannot, at the end of the redirect to method, send the HTTP response and cause

the current thread to stop execution. PHP frameworks can use the exit function to

implement halt-on-redirect behavior, because each request spawns a new PHP process.

Our proposed solution is to throw a new type of exception, RedirectOccured-

Exception, at the end of the redirect to body. In the Ruby on Rails framework

core, where the controller is called, there is a catch block for this exception. While

this will prevent almost all EARs, there is a possibility for code to be executed in an

ensure block, Ruby’s equivalent of a “finally” block. Code in this block will be

executed regardless of a redirect. However, we believe this is semantically in line with

the way the language should work: ensure blocks will always be executed, no matter

what happens, and this is clear to the programmer via the language’s semantics.

158

Chapter 5. Discovering and Mitigating Execution After Redirect Vulnerabilities

5.5 Conclusions

We have described a new type of vulnerability, Execution After Redirect, and de-

veloped a novel static analysis tool to effectively find EARs. We showed that EARs are

difficult to differentiate between benign and vulnerable. This difficulty is due to vul-

nerable EARs violating the specific logic of the web application. Better understanding

of the application’s logic should help differentiate vulnerable and benign EARs and it

will be the focus of future work.

159

Chapter 6

Toward Preventing Server-Side XSS

via Automatic Code and Data

Separation

Automatically finding vulnerabilities, as we have done in the previous chapters, is a

great way to find vulnerabilities in web applications. However, there is always the risk

that the automated tools do not find a vulnerability, and these tools give no guarantees

that all vulnerabilities are found. Another avenue to secure web applications from at-

tack is to write the application in such a way as to make vulnerabilities impossible. In

this chapter, we examine Cross-Site Scripting vulnerabilities as having the root cause

of Code and Data mixing. By properly applying the basic security principles of Code

and Data separation we can automatically prevent a wide swath of Cross-Site Scripting

vulnerabilities.

160

Chapter 6. Toward Preventing Server-Side XSS

Web applications are prevalent and critical in today’s computing world, making

them a popular attack target. Looking at types of vulnerabilities reported in the Com-

mon Vulnerabilities and Exposures (CVE) database [41], web application flaws are by

far the leading class.

Modern web applications have evolved into complex programs. These programs

are no longer limited to server-side code that runs on the web server. Instead, web ap-

plications include a significant amount of JavaScript code that is sent to and executed

on the client. Such client-side components not only provide a rich and fast user inter-

face, they also contain parts of the application logic and typically communicate with the

server-side component through asynchronous JavaScript calls. As a result, client-side

scripts are an integral component of modern web applications, and they are routinely

generated by server-side code.

There are two kinds of cross-site scripting (XSS) vulnerabilities: server-side and

client-side. The latter is essentially caused by bugs in the client-side code, while the

former is caused by bugs in the server-side code. In this chapter we focus on server-side

XSS vulnerabilities (unless specified otherwise, we will use XSS to refer to server-side

XSS). XSS vulnerabilities allow attackers to inject client-side scripting code (typically,

JavaScript) into the output of web applications. The scripts are then executed by the

browser as it renders the page, allowing malicious code to run in the context of the web

application. Attackers can leverage XSS attacks to leak sensitive user information, im-

161

Chapter 6. Toward Preventing Server-Side XSS

personate the victim to perform unwanted actions in the context of the web application,

or launch browser exploits.

There has been a significant amount of research effort on eliminating XSS vulner-

abilities. The main line of research has focused on sanitizing untrusted input [11, 58,

67, 80, 90, 92, 101, 123, 125, 136, 141, 143, 145, 146]. Sanitization attempts to identify

and “clean up” untrusted inputs that might contain JavaScript code. Performing correct

sanitization is challenging, for a number of reasons. One reason is that it is difficult

to guarantee coverage for all possible paths through the application [11, 143]. As part

of this problem, it is necessary to find all program locations (sources) where untrusted

input can enter the application, and then verify, along all program paths, the correctness

of all sanitization functions that are used before the input is sent to the client (sinks).

Furthermore, it is not always clear how to properly sanitize data, because a single input

might appear in different contexts in the output of the application [125].

The root cause of XSS vulnerabilities is that the current web application model

violates the principle of code and data separation. In the case of a web page, the

data is the HTML content of the page and the code is the JavaScript code. Mixing

JavaScript code and HTML data in the same channel (the HTTP response) makes it

possible for an attacker to convince a user’s browser to interpret maliciously crafted

HTML data as JavaScript code. While sanitization tries to turn untrusted input, which

could potentially contain code, into HTML data, we believe the fundamental solution

162

Chapter 6. Toward Preventing Server-Side XSS

to XSS is to separate the code and data in a web page—the way HTML and JavaScript

should have been designed from the start. Once the code and data are separated, a web

application can communicate this separation to the browser, and the browser can ensure

no code is executed from the data channel. Such communication and enforcement is

supported by the new W3C browser standard Content Security Policy (CSP) [131].

While new web applications can be designed with code and data separated from

the start, it has been a daunting task to achieve code and data separation for legacy

applications. The key challenge is to identify code or data in the output of a web

application. Previous solutions have relied on either developers’ manual annotations or

dynamic analysis. For example, BEEP [77] requires developers to manually identify

inline JavaScript code. BLUEPRINT [93] requires developers to manually identify the

data by specifying which application statements could output untrusted input. XSS-

GUARD dynamically identifies application-intended JavaScript code in a web page by

comparing it with a shadow web page generated at run time [18]. The main problem

preventing these solutions from being adopted is either the significant manual effort

required from application developers or the significant runtime performance overhead.

In fact, Weinberger et al. [142] showed how difficult it is to manually separate the code

and data of a web application.

In this chapter, we present DEDACOTA, the first system that can automatically and

statically rewrite an existing web application to separate code and data in its web pages.

163

Chapter 6. Toward Preventing Server-Side XSS

Our novel idea is to use static analysis to determine all inline JavaScript code in the web

pages of an application. Specifically, DEDACOTA performs static data-flow analysis of

a given web application to approximate its HTML output. Then, it parses each page’s

HTML output to identify inline JavaScript code. Finally, it rewrites the web application

to output the identified JavaScript code in a separate JavaScript file.

The problem of statically determining the set of (HTML) outputs of a web applica-

tion is undecidable. However, as we observe in our evaluation, the problem is typically

tractable for real-world web applications. These applications are written by benign

developers and tend to have special properties that allow us to compute their outputs

statically. For instance, the majority of the inline JavaScript code is static in the web

applications we tested.

Dynamic inline JavaScript presents a second-order problem. Here, the JavaScript

code itself (rather than the HTML page) is generated dynamically on the server and

may depend on untrusted inputs. Again, the potential for XSS vulnerabilities exists.

DEDACOTA provides a partial solution to this problem by producing alerts for all po-

tentially dangerous instances of dynamic JavaScript generation in the application and

by safely sanitizing a large subclass of these instances.

We implemented a prototype of DEDACOTA to analyze and rewrite ASP.NET [98]

web applications. We applied DEDACOTA to six open-source, real-world ASP.NET

applications. We verified that all known XSS vulnerabilities are eliminated. We then

164

Chapter 6. Toward Preventing Server-Side XSS

performed extensive testing to ensure that the rewritten binaries still function correctly.

We also tested DEDACOTA’s performance and found that the page loading times be-

tween the original and rewritten application are indistinguishable.

The main contributions of this chapter are the following:

• A novel approach for automatically separating the code and data of a web appli-

cation using static analysis (Section 6.3).

• A prototype implementation of our approach, DEDACOTA, applied to ASP.NET

applications (Section 6.4).

• An evaluation of DEDACOTA, showing that we are able to apply our analysis

to six real-world, open-source, ASP.NET applications. We show that our imple-

mentation prevents the exploitation of know vulnerabilities and that the semantics

of the application do not change (Section 6.5).

6.1 Background

In this section, we provide the background necessary for understanding the design

of DEDACOTA.

165

Chapter 6. Toward Preventing Server-Side XSS

6.1.1 Cross-Site Scripting

Modern web applications consist of both server-side and client-side code. Upon

receiving an HTTP request, the server-side code, which is typically written in a server-

side language, such as PHP or ASP.NET, dynamically generates a web page as a re-

sponse, based on the user input in the request or data in a backend database. The

client-side code, which is usually written in JavaScript and is executed by the browser,

can be either inline in the web page or external as a standalone JavaScript file.

Cross-site scripting (XSS) vulnerabilities allow an attacker to inject malicious Java-

Script into web pages to execute in the client-side browser, as if they were generated by

the trusted web site. If the vulnerability allows the attacker to store malicious JavaScript

on the server (e.g., using the contents of a message posted on a newsgroup), the vulner-

ability is traditionally referred to as “stored” or “persistent XSS.” When the malicious

code is included in the request and involuntarily reflected to the user (copied into the

response) by the server, the vulnerability is called “reflected XSS.” Finally, if the bug is

in the client-side code, the XSS vulnerability is referred to as “DOM-based XSS” [86].

We call the first two types of vulnerabilities “server-side XSS vulnerabilities” and the

latter “client-side XSS vulnerabilities.”

The root cause for server-side XSS is that the code (i.e., the client-side script) and

the data (i.e., the HTML content) are mixed together in a web page. By crafting some

166

Chapter 6. Toward Preventing Server-Side XSS

malicious input that will be included into the returned web page by the server-side code,

an attacker can trick the browser into confusing his data as JavaScript code.

6.1.2 Code and Data Separation

The separation of code and data can be traced back to the Harvard Architecture,

which introduces separate storage and buses for code and data. Separating code and

data is a basic security principle for avoiding code injection attacks [69]. Historically,

whenever designs violate this principle, there exists a security hole. An example is the

stack used in modern CPUs. The return addresses (code pointers) and function local

variables (data) are co-located on the stack. Because the return addresses determine

control transfers, they are essentially part of the code. Mixing them together with the

data allows attackers to launch stack overflow attacks, where data written into a local

variable spills into an adjacent return address. In the context of web applications, we

face the same security challenge, this time caused by mixing code and data together in

web pages. To fundamentally solve this problem, we must separate code and data in

web pages created by web applications.

6.1.3 Content Security Policy

Content Security Policy (CSP) [131] is a mechanism for mitigating a broad class of

content injection vulnerabilities in web applications. CSP is a declarative policy that

167

Chapter 6. Toward Preventing Server-Side XSS

allows a web application to inform the browser, via an HTTP header, about the sources

from which the application expects to load resources such as JavaScript code. A web

browser that implements support for CSP can enforce the security policy declared by

the web application.

A newly developed web application can leverage CSP to avoid XSS by not using

inline JavaScript and by specifying that only scripts from a set of trusted sites are al-

lowed to execute on the client. Indeed, Google has required that all Chrome browser

extensions implement CSP [3]. However, manually applying CSP to a legacy web ap-

plication typically requires a non-trivial amount of work [142]. The reason is that the

authors of the web application have to modify the server-side code to clearly identify

which resources (e.g., which JavaScript programs) are used by a web page. Moreover,

these scripts have to be separated from the web page.

CSP essentially provides a mechanism for web browsers to enforce the separation

between code and data as specified by web applications. Our work solves the problem

of automatically transforming legacy web applications so that the code and data in their

web pages are separated. The transformed web applications can then directly leverage

the browser’s support for CSP to avoid a wide range of XSS vulnerabilities.

168

Chapter 6. Toward Preventing Server-Side XSS

6.2 Threat Model

Before discussing the design of DEDACOTA, we need to state our assumptions about

the code that we are analyzing and the vulnerabilities we are addressing.

Our approach involves rewriting a web application. This web application is written

by a benign developer—that is, the developer has not intentionally obfuscated the code

as a malicious developer might. This assumption also means that the JavaScript and

HTML are benign and not intentionally taking advantage of browser parsing quirks (as

described in BLUEPRINT [93]).

DEDACOTA will only prevent server-side XSS vulnerabilities. We define server-

side XSS vulnerabilities as XSS vulnerabilities where the root cause of the vulnerabil-

ity is in server-side code. Specifically, this means XSS vulnerabilities where unsani-

tized input is used in an HTML page. We explicitly do not protect against client-side

XSS vulnerabilities, also called DOM-based XSS. Client-side XSS vulnerabilities oc-

cur when untrusted input is interpreted as JavaScript by the client-side JavaScript code

using methods such as eval, document.write, or innerHTML. The root cause

of these vulnerabilities is in the JavaScript code.

In this chapter, we focus solely on separating inline JavaScript code (that is, Java-

Script in between <script> and </script>). While there are other vectors where

JavaScript can be executed, such as JavaScript code in HTML attributes (event handlers

169

Chapter 6. Toward Preventing Server-Side XSS

such as onclick) and inline Cascading Style Sheet (CSS) styles [64], the techniques

described here can be extended to approximate and rewrite the HTML attributes and

inline CSS.

Unfortunately, code and data separation in an HTML page is not a panacea for XSS

vulnerabilities. In modern web applications, the inline JavaScript code is sometimes

dynamically generated by the server-side code. A common scenario is to use the dy-

namic JavaScript code to pass data from the server-side code to the client-side code.

There may be XSS vulnerabilities, even if code and data are properly separated, if the

data embedded in the JavaScript code is not properly sanitized. DEDACOTA provides a

partial solution to the problem of dynamic JavaScript (see Section 6.3.5).

6.3 Design

Our goal is to statically transform a given web application so that the new version

preserves the application semantics but outputs web pages where all the inline Java-

Script code is moved to external JavaScript files. These external files will be the only

JavaScript that the browser will execute, based on a Content Security Policy.

There are three high-level steps to our approach. For each web page in the web

application: (1) we statically determine a conservative approximation of the page’s

HTML output, (2) we extract all inline JavaScript from the approximated HTML out-

170

Chapter 6. Toward Preventing Server-Side XSS

1 <html>

2 <% Title = "Example";

3 Username = Request.Params["name"]; %>

4 <head><tile><%= Title %></title></head>

5 <body>

6 <script>

7 var username = "<%= Username %>";

8 </script>

9 </body>

10 </html>

Listing 6.1: Example of a simple ASP.NET Web Form page.

put, and (3) we rewrite the application so that all inline JavaScript is moved to external

files.

Hereinafter, we define a running example that we use to describe how DEDACOTA

automatically transforms a web application, according to the three steps outlined pre-

viously.

6.3.1 Example

Listing 6.1 shows a simplified ASP.NET Web Form page. Note that everything

not in between the <% and %> is output directly to the browser. Everything between

matching <% and %> is C# code. A subtle but important point is that <%= is used to

indicate that the C# code will output a string at that location in the HTML output.

In Listing 6.1, Line 2 sets the title of the page, and Line 3 sets the Username

variable to the name parameter sent in the query string. The Username is output to

the browser inside a JavaScript string on Line 7. This is an example of the C# server-

171

Chapter 6. Toward Preventing Server-Side XSS

1 void Render(TextWriter w) {

2 w.Write("<html>\n ");

3 this.Title = "Example";

4 this.Username = Request.Params["name"];

5 w.Write("\n <head><tile>");

6 w.Write(this.Title);

7 w.Write("</title></head>\n <body>\n <script>\n var

username = \"");

8 w.Write(this.Username);

9 w.Write("\";\n </script>\n </body>\n</html>");

10 }

Listing 6.2: The compiled C# output of Listing 6.1.

side code passing information to the JavaScript client-side code, as the intent here is

for the JavaScript username variable to have the same value as the C# Username

variable.

Internally, ASP.NET compiles the ASP.NET Web Form page to C#, either when the

application is deployed, or on-demand, as the page is accessed. The relevant compiled

C# output of Listing 6.1 is shown in Listing 6.2. Here, the ASP.NET Web Form page

has been transformed into an equivalent C# program. The ASP.NET compiler creates

a class (not shown) that represents the ASP.NET Web Form. A method of the class

is given a TextWriter object as a parameter. Anything written to this object will

be sent in the HTTP response. TextWriter.Write is a method call equivalent of

writing to the console in a traditional command-line application.

From comparing Listing 6.1 to Listing 6.2, one can see that output not between

<% and %> tags is written to the TextWriter object. The code between the <% and

%> tags is inlined into the function (Lines 3 and 4), and the code that is between the

172

Chapter 6. Toward Preventing Server-Side XSS

<%= and %> tags is written to the TextWriter object (Lines 6 and 8). We also note

that TextWriter.Write is one of a set of methods used to write content to the

HTTP response. However, for simplicity, in the remainder of this chapter, we will use

TextWriter.Write to represent all possible ways of writing content to the HTTP

response.

6.3.2 Approximating HTML Output

In the first phase of our approach, we approximate the HTML output of a web page.

This approximation phase is a two-step process. First, we need to determine, at every

TextWriter.Write location, what is being written. Second, we need to determine

the order of the TextWriter.Write function invocations.

We use a different static analysis technique to answer each of the two questions.

To determine what is being written at a TextWriter.Write, we use the points-to

analysis algorithm presented in [38] modified to work on .NET byte-code, instead of C.

This points-to analysis algorithm is inclusion-based, demand-driven, context-sensitive,

field-sensitive, and partially flow-sensitive. The points-to analysis algorithm computes

the set of strings that alias with the parameter of TextWriter.Write. If all strings

in the alias set are constant strings, the output at the TextWriter.Writewill be de-

fined as the conjunction of all possible constant strings. Otherwise, we say the output is

statically undecidable. To determine the ordering of all TextWriter.Writemethod

173

Chapter 6. Toward Preventing Server-Side XSS

〈<html>, Line 2〉

〈Example, Line 6〉

〈<head><tile>, Line 5〉

〈*, Line 8〉

〈</title></head><body><script>var username = ", Line 7〉

〈";</script></body></html>, Line 9〉

Figure 6.1: Approximation graph for the code in Listing 6.1 and Listing 6.2. The dotted

node’s content is not statically determinable.

calls, we build a control-flow graph, using standard techniques, that only contains the

TextWriter.Write method calls.

We encode the information produced by the two static analyses—the ordering of

TextWriter.Write method calls and their possible output—into a graph that we

call an approximation graph. Figure 6.1 shows the approximation graph for the code in

Listing 6.1 and Listing 6.2. Each node in the graph contains the location of the Text-

Writer.Write that this node represents as well as the possible constant strings that

could be output at this TextWriter.Write location. Content that cannot be deter-

mined statically is represented by a wild card * (the dotted node in Figure 6.1). The

strings that may be output at the TextWriter.Writewill be used to identify inline

JavaScript, and the location of the TextWriter.Write will be used for rewriting

the application.

174

Chapter 6. Toward Preventing Server-Side XSS

〈<script>, Line 20〉

〈setupGuest();, Line 30〉〈setupAdmin();, Line 30〉

〈*, Line 50〉

〈var test = ", Line 40〉

〈</script>, Line 70〉

〈";, Line 60〉

Figure 6.2: Approximation graph with branches and a loop. The loop will be collapsed

into one node to create the final approximation graph.

In Figure 6.2 we show the approximation graph of a more complex page. The

graph in Figure 6.2 contains a branch, where each node in the branch maps to the same

TextWriter.Write method. This happens when the points-to analysis says that

the TextWriter.Write method can output one of multiple strings. The other way

there can be a branch in the approximation graph is when there is a branch in the control

flow of the web application. The graph in Figure 6.2 also contains a loop that includes

the nodes shown in bold. However, because we cannot statically determine the number

of times a loop may execute, and we want our analysis to be conservative, we collapse

all nodes of a loop (in the approximation graph) into a single node. This new node now

has undecidable content (represented by a *). The new node also keeps track of all the

TextWriter.Write methods that were part of the original loop.

175

Chapter 6. Toward Preventing Server-Side XSS

After collapsing all loops in the graph, we derive a conservative approximation of

the HTML output of a web page. The approximation graph is a directed acyclic graph

(DAG), and any path from the root node to a leaf node will represent one possible

output of the web page.

6.3.3 Extracting Inline JavaScript

In the second phase, our approach uses the approximation graph described previ-

ously to extract all possible inline JavaScript. The output of this phase is a set contain-

ing all possible inline JavaScript that may appear in the web page.

In an approximation graph, each unique path from the root node to a leaf node rep-

resents a potential output of the page. A naı̈ve algorithm would enumerate all paths

and, thus, all outputs, and parse each output string to identify inline JavaScript. How-

ever, even without loops, the number of unique paths even in a simple web page may

quickly explode and become unmanageable (this is the path-explosion problem faced

in static analysis).

To reduce the impact of the path explosion problem, we extract the inline JavaScript

directly from the approximation graph. We first search for the opening and closing tags

of HTML elements in the graph. We ignore tags that appear in comments. Then, for

each pair of JavaScript tags (i.e., <script> and </script>), we process all the

176

Chapter 6. Toward Preventing Server-Side XSS

unique paths between the opening and closing tags. For each path, we obtain an inline

JavaScript that the program might output.

While our current prototype is relatively simplistic in parsing the starting and end-

ing JavaScript files, it could be possible to use the parsing engine from a real browser.

However, this is not as straight-forward as it seems, as our input is a graph of all poten-

tial HTML output, not a single document. We leave this approach to future work.

All identified inline JavaScript pieces are then passed to the last phase of our ap-

proach, which decides how to rewrite the application.

6.3.4 Application Rewriting

The goal of the third phase is to rewrite the application so that all identified inline

JavaScript will be removed from the HTML content and saved in external JavaScript

files. In the HTML code, an inline JavaScript is replaced with a reference to the external

JavaScript file as follows:

<script src="External.js"></script>

It is not uncommon that multiple possible inline JavaScript snippets exist between

an opening and closing JavaScript tag because there may be branches between the tags

in the approximation graph. To know which exact inline JavaScript is created, we need

to track the execution of the server-side code.

177

Chapter 6. Toward Preventing Server-Side XSS

The inline JavaScript identified in the previous phase falls into two categories: static

and dynamic (i.e., contains undecidable content). Because we cannot statically decide

the content of a dynamic inline JavaScript, we must track the execution of the server-

side code to create its external JavaScript file(s) at runtime. Therefore, we can avoid

tracking the execution of the server-side code only for the case in which there is a single,

static inline JavaScript code.

For a pair of opening and closing script tags that require tracking the execution of

the server-side code, we rewrite the application in the following way. At the Text-

Writer.Write that may output the opening script tag, we first check if the output

string contains the tag. We must perform this check because a TextWriter.Write

site may be used to output either inline JavaScript code or other HTML. If we find

the opening script tag in the output, we use a session flag to indicate that an inline

JavaScript rewriting has started. We write out everything before the start of the opening

script tag. We remove the opening script tag itself. The remaining content is stored

into a session buffer. Note that both session flag and buffer are unique to each opening

script tag. Then, for all subsequent TextWriter.Write method calls that are part

of the inline JavaScript we are rewriting, except for the last (that writes the closing

tag), we append their output to the session buffer if the session flag is on. For the last

TextWriter.Write method call (i.e., the one that writes the closing script tag),

any string content that occurs before the closing script tag is appended to the session

178

Chapter 6. Toward Preventing Server-Side XSS

1 w.Write("</title></head>\n <body>\n ");

2

3 Session["7"] = "\n var username = \"");

4 Session["7"] += this.Username;

5 Session["7"] += "\";\n ";

6

7 var hashName = Hash(Session["7"]) + ".js";

8 WriteToFile(hashName, Session["7"]);

9

10 w.Write("<script src=\"" + hashName + "\"></script>");

11

12 w.Write("\n </body>\n</html>");

Listing 6.3: The result of the rewriting algorithm applied to Listing 6.2. Specifically,

here we show the transformation of Lines 7–9 in Listing 6.2.

buffer. Any content after the closing script tag is just written to the output. At this point,

the session buffer contains the entire inline JavaScript code. We save this code to an

external file and add a TextWriter.Write method call that outputs the reference

to this JavaScript file.

To support JavaScript caching on the client side, the name of the JavaScript file

is derived from its content, using a cryptographic hash of the JavaScript content. An

unintended benefit of this approach is that inline JavaScript that is included on multiple

pages will be cached by the browser, improving application performance by reducing

the size of the page and saving server requests.

Listing 6.3 shows the result of applying this rewriting process to the inline Java-

Script code in Listing 6.2. The changes shown are only those made to Lines 7–9 in

Listing 6.2.

179

Chapter 6. Toward Preventing Server-Side XSS

6.3.5 Dynamic Inline JavaScript

At this point in our analysis, we have successfully separated the JavaScript code

from the HTML data in the web application. If the web application’s JavaScript is

static, and by static we mean statically decidable, then the application is now immune to

XSS vulnerabilities. However, if the web application dynamically generates JavaScript

with undecidable content, and that content is not properly sanitized inside the Java-

Script code, an attacker can exploit this bug to inject a malicious script. The approach

discussed so far does not mitigate this attack, because it simply moves the vulnerable

JavaScript to an external file.

To understand how dynamic JavaScript can result in a vulnerability, consider our

example application in Listing 6.2. There is an XSS vulnerability on Line 8 because

the Username variable is derived from the name parameter and output directly to

the user, without sanitization. An attacker could exploit this vulnerability by setting

the name parameter to ";alert(’xss’)//. This would cause the resulting inline

JavaScript to be the following, thus executing the attacker’s JavaScript code:

<script>

var username = "";alert(’xss’)//";

</script>

180

Chapter 6. Toward Preventing Server-Side XSS

Therefore, the code section of the application is dynamically generated with un-

trusted input and even with the code and data separated, there is still an XSS vulnera-

bility.

We attempt to mitigate this problem, and therefore improve the security of the ap-

plication, in two ways. First, we identify cases in which we can safely rewrite the

application. Second, we notify the developer when we make an inline to external trans-

formation that is potentially unsafe.

For the first case, when the undetermined output is produced in certain JavaScript

contexts, we can include it in a safe fashion via sanitization. Specifically, during static

analysis we pass the dynamic inline JavaScript to a JavaScript parser. Then, we query

the parser to determine the contexts in which the undetermined output (i.e., the * parts)

is used. Here, for context we are referring specifically to the HTML parsing contexts

described by Samuel et al. [123]. Possible contexts are JavaScript string, JavaScript

numeric, JavaScript regular expression, JavaScript variable, etc. If an undetermined

output is in a string context, we sanitize them in a way similar to how BLUEPRINT [93]

handles string literals in JavaScript.

Like BLUEPRINT, on the server side we encode the string value and store the en-

coded data in JavaScript by embedding a call to a decoding function. Then when the

JavaScript is executed on the client side, the decoding function will decode the encoded

data and return the string. Unlike BLUEPRINT, we do not require any developer anno-

181

Chapter 6. Toward Preventing Server-Side XSS

tations because our static analysis can automatically identify which JavaScript context

an undetermined output is in.

6.3.6 Generality

While the description of our approach so far was specific to ASP.NET Web Forms,

the high-level idea of automatically separating code and data in a legacy web appli-

cation can be generalized to any other web application frameworks or templating lan-

guages. There are still challenges that remain to apply our approach to another lan-

guage, or even another template in the same language. The two main steps of our

approach that must be changed to accommodate a different language or templating lan-

guage are: (1) understand how the output is created by the web application and (2)

understand how to rewrite the web application. Only the first step affects the analysis

capability (as the rewriting process is fairly straightforward).

To automatically separate the code and data of a different language or templating

language, one must understand how the language or template generates its output. After

that, one would need to implement a static analysis that can create an approximation

graph. For instance, in the default Ruby on Rails template, ERB, variables are passed

to the template either via a hash table or class instance variables [120]. Therefore, one

could approximate the output of an ERB template by statically tracking the variables

added to the hash table and class instance variables (using points-to analysis). Once

182

Chapter 6. Toward Preventing Server-Side XSS

an approximation graph is created, detecting inline JavaScript can be performed in the

manner previously described.

The main factor to affect the success of applying our approach to another web ap-

plication framework or templating language is the precision of the static analysis, or in

other words, how precise and detailed the approximation graph would be. The more dy-

namicism in the language or framework, such as run-time code execution and dynamic

method invocation, the more difficult the analysis will be. Simply, the more of the

control-flow graph that we are able to determine statically, the better our analysis will

be. As an example the default templating language in Django only allows a subset of

computation: iterating over a collection instead of arbitrary loops [44]. This restriction

could make the analysis easier and therefore the approximation graph more precise.

6.4 Implementation

We implemented the automated code and data separation approach described in

Section 6.3 in a prototype called DEDACOTA. This prototype targets ASP.NET Web

Forms applications. ASP.NET is a widely used technology; of the Quantcase top mil-

lion websites on the Internet, 21.24% use ASP.NET [25].

DEDACOTA targets binary .NET applications. More precisely, it takes as input

ASP.NET Web Forms binary web applications, performs the three steps of our ap-

183

Chapter 6. Toward Preventing Server-Side XSS

proach, and outputs an ASP.NET binary that has all inline JavaScript code converted

into external JavaScript files. We operate at the binary level because we must be able

to analyze the ASP.NET system libraries, which are only available in binary form.

We leverage the open-source Common Compiler Infrastructure (CCI) [99] for read-

ing and analyzing the .NET Common Language Runtime byte-code. CCI also has

modules to extract basic blocks and to transform the code into single static assignment

(SSA) form. We also use CCI to rewrite the .NET binaries.

For the static analysis engine, we leverage the points-to analysis engine of KOP

(also known as MAS) [38]. KOP was originally written for the C programming lan-

guage. Therefore, we wrote (using CCI) a frontend that processes .NET binaries and

outputs the appropriate KOP points-to rules. Then, after parsing these rules, the static

analysis engine can provide either alias analysis or points-to analysis. The KOP points-

to analysis is demand-driven, context-sensitive, field-sensitive, and, because of the CCI

single static assignment, partially flow-sensitive.

An important point, in terms of scalability, is the demand-driven ability of the static

analysis engine. Specifically, we will only explore those parts of the program graph that

are relevant to our analysis, in contrast to traditional data-flow techniques which track

data dependencies across the entire program. The demand-driven nature of the static

analysis engine offers another scalability improvement, which is parallelism. Each

analysis query is independent and, therefore, can be run in parallel.

184

Chapter 6. Toward Preventing Server-Side XSS

InfoBoxSearchOnSearch

default.aspx

menu RecentPostsPageListPostCalendar

PostList PostCalendar

SearchBox

Figure 6.3: Control parent-child relationship between some of the controls in

default.aspx from the application BlogEngine.NET. The siblings are ordered from

left to right in first-added to last-added order.

We also extend the KOP points-to analysis system to model string concatenation.

We do this by including special edges in the program graph that indicate that a variable

is the result of the concatenation of two other variables. When computing the alias set

of a variable, we first do so in the original way (ignoring any concatenation edges).

Then, for each variable in the alias set that has concatenation edges, we compute the

alias set for each of the two variables involved in the concatenation operation. We

concatenate strings in the two alias sets and add them to the original alias set. The

undecidable variables are tracked, so that their concatenated result contains a wildcard.

This process is recursive, and handles arbitrary levels of concatenation.

ASP.NET uses the idea of reusable components, called Controls. The idea is that

a developer can write a control once and then include it in other pages, and even other

controls. This relationship of including one control inside another creates a parent-child

relationship between the controls (the parent being the control that contains the child

control).

185

Chapter 6. Toward Preventing Server-Side XSS

In an ASP.NET Web Form, child controls are first added to the parent’s Child-

Controls collection, which is similar to an array. Then, during rendering, a parent

renders its child controls either by iterating over the ChildControls or by refer-

encing a child control based on its index in the ChildControls. Because the KOP

points-to analysis does not model the array relation, we cannot precisely decide which

child Control is being selected during rendering. To handle this problem, we need to

track the parent-child relationships directly.

These parent-child relationships form a tree. Figure 6.3 shows the parent-child

relationship of some of the user controls of default.aspx in the application Blo-

gEngine.NET (one of the programs used in our evaluation). When building the control

graph, we must statically recreate this tree.

To create this relationship statically, we take an approach similar to approximat-

ing the HTML output. The entry function for an ASP.NET page is Framework-

Initialize, which is similar to the main function for a C program. Starting from

this method, we create a control-flow graph of all calls to AddParsedSubObject,

which is the function that adds a child control to a parent. This gives us the order of the

AddParsedSubObject calls. At each of the calls, we use the points-to analysis to

find which control is the parent and which is the child. This information, along with the

order of the calls to AddParsedSubObject, allows us to recreate the parent-child

control tree.

186

Chapter 6. Toward Preventing Server-Side XSS

Application Version Known Vuln. # Web Forms # Controls ASP LOC C# LOC Total LOC

BugTracker.NET 3.4.4 CVE-2010-3266 115 0 27,257 8,417 35,674

BlogEngine.NET 1.3 CVE-2008-6476 19 11 2,525 26,987 29,512

BlogSA.NET 1.0 Beta 3 CVE-2009-0814 29 26 2,632 4,362 6,994

ScrewTurn Wiki 2.0.29 CVE-2008-3483 30 4 2,951 9,204 12,155
WebGoat.NET e9603b9d5f 2 Intentional 67 0 1,644 10,349 11,993

ChronoZoom Beta 3 N/A 15 0 3,125 18,136 21,261

Table 6.1: ASP.NET Web Form applications that we ran DEDACOTA on to test its

applicability to real-world web applications.

6.5 Evaluation

There are three properties that we must look at to evaluate the effectiveness of

DEDACOTA. First, do we prevent XSS vulnerabilities in the data section of the ap-

plication by applying code and data separation? Second, do we correctly separate the

code and data of the application—that is, does the rewriting preserve the application’s

semantics? Third, what is the impact on the application’s performance? To evaluate the

security of our approach, we look at ASP.NET applications with known vulnerabilities.

To evaluate the correctness of our rewriting procedure, we apply our approach to appli-

cations that have developer-created integration tests. Then, we carried out performance

measurements to answer the third question. Finally, we discuss the relation between

separating code and data in the output and sanitizing the input.

6.5.1 Applications

We wish to evaluate DEDACOTA on ASP.NET web applications that are real-world,

are open-source, and contain known vulnerabilities. Real-world applications are impor-

187

Chapter 6. Toward Preventing Server-Side XSS

tant for showing that our approach works on real-world code, open-source is important

for other researchers to replicate our results, and known-vulnerable is important be-

cause we aim to automatically prevent these known vulnerabilities.

Unfortunately, there is no standard (or semi-standard) ASP.NET web application

benchmark that meets all three requirements. Furthermore, finding these application

proved to be a challenge. Compared to other languages such as PHP, there are fewer

open-source ASP.NET applications (as most ASP.NET applications tend to be pro-

prietary). Therefore, here we present a benchmark of six real-world, open-source,

ASP.NET applications, four of which are known-vulnerable, one of which is inten-

tionally vulnerable for education, and one of which has a large developer-created test

suite.

Table 6.1 contains, for each application, the version of the application used in our

evaluation, the CVE number of the vulnerability reported for the application, the num-

ber of ASP.NET Web Form pages, and the number of developer-written ASP.NET

Controls. To provide an idea of the size of the applications, we also show the num-

ber of lines of code (LOC) of the ASP.NET controls (Web Forms and Controls) and C#

code.

The open-source web applications BugTracker.NET [24], BlogEngine.NET [19],

BlogSA.NET [20], and ScrewTurn Wiki [127] all contain an XSS vulnerability as de-

fined in the associated CVE.

188

Chapter 6. Toward Preventing Server-Side XSS

WebGoat.NET [65] is an open-source ASP.NET application that is intentionally

vulnerable. The purpose is to provide a safe platform for interested parties to learn

about web security. Among the vulnerabilities present in the application are two XSS

vulnerabilities.

ChronoZoom Beta 3 [35], is an open-source HTML5 “interactive timeline for all of

history.” Parts are written in ASP.NET Web Forms, but the main application is a Java-

Script-heavy HTML page. We use ChronoZoom because, unlike the other applications,

it has an extensive test suite that exercises the JavaScript portion of the application.

To evaluate the correctness of our rewriting, we converted the main HTML page of

ChronoZoom, which contained inline JavaScript, into an ASP.NET Web Form page,

along with nine other HTML pages that were used by the test suite.

These six real-world web applications encompass the spectrum of web applica-

tion functionality that we expect to encounter. These applications constitute a total of

100,000 lines of code, written by different developers, each with a different coding

style. Some had inline JavaScript in the ASP.NET page, some created inline JavaScript

in C# directly, while others created inline JavaScript in C# using string concatena-

tion. Furthermore, while analyzing each application we also analyzed the entire .NET

framework (which includes ASP.NET); all 256 MB of binary code. As our analysis

handles ASP.NET, we are confident that our approach can be applied to the majority of

ASP.NET applications.

189

Chapter 6. Toward Preventing Server-Side XSS

6.5.2 Security

We ran DEDACOTA on each of our test applications. Table 6.2 shows the total

number of inline JS scripts per application and a breakdown of the number of static

inline JS scripts, the number of safe dynamic inline JS scripts, and the number of unsafe

dynamic inline JS scripts. There were four dynamic inline JS scripts created by the

ASP.NET framework, and these are represented in Table 6.2 in parentheses. We chose

to exclude these four from the total dynamic inline JS scripts because they are not under

the developer’s control, and, furthermore, they can and should be addressed by changes

to the ASP.NET library. Furthermore, it is important to note that our tool found these

dynamic inline JS scripts within the ASP.NET framework automatically.

From our results it is clear that modern web applications frequently use inline JS

scripts. The applications used a range of five to 46 total inline JS scripts. Of these total

inline JS scripts 22% to 100% of the inline JS scripts were static.

DEDACOTA was able to safely transform, using the technique outlined in Sec-

tion 6.3.5, 50% to 70% of the dynamic inline JS scripts. This result means that our

mitigation technique worked in the majority of the cases, with only zero to four actual

unsafe dynamic inline JS scripts per application.

We looked for false negatives (inline JavaScript that we might have missed) in two

ways. We manually browsed to every ASP.NET Web Form in the application and

looked for inline JavaScript. We also searched for inline JavaScript in the original

190

Chapter 6. Toward Preventing Server-Side XSS

source code of the application to reveal possible scripts the previous browsing might

have missed. We did not find any false negatives in the applications.

To evaluate the security improvements for those applications that had known vulner-

abilities, we manually crafted inputs to exploit these know bugs. After verifying that the

exploits worked on the original version of the application, we launched them against

the rewritten versions (with the Content Security Policy header activated, and with a

browser supporting CSP). As expected, the Content Security Policy in the browser,

along with our rewritten applications, successfully blocked all exploits.

6.5.3 Functional Correctness

To evaluate the correctness of our approach, and to verify that we maintained the

semantics of the original application, we used two approaches. First, we manually

browsed web pages generated by each rewritten application and interacted with the

web site similar to a normal user. During this process, we looked for JavaScript errors,

unexpected behaviors, or CSP violations. We did not find any problems or deviations.

Second, and more systematically, we leveraged the developer-written testing suite in

ChronoZoom. Before we applied our rewriting, the original application passed 160

tests. After rewriting, all 160 tests executed without errors.

191

Chapter 6. Toward Preventing Server-Side XSS

Application Total JS Static Safe Dynamic Unsafe Dynamic

BugTracker.NET 46 41 3 2 (4)

BlogEngine.NET 18 4 10 4 (4)

BlogSA.NET 12 10 1 1 (4)

ScrewTurn Wiki 35 27 4 4 (4)

WebGoat.NET 6 6 0 0 (4)

ChronoZoom 5 5 0 0 (4)

Table 6.2: Results of running DEDACOTA against the ASP.NET Web Form applications.

Safe Dynamic is the number of dynamic inline JS scripts that we could safely transform,

and Unsafe Dynamic is the number of dynamic inline JS scripts that we could not safely

transform.

Application Page Size Loading Time

ChronoZoom (original) 50,827 0.65

ChronoZoom (transformed) 20,784 0.63

BlogEngine.NET (original) 18,518 0.15

BlogEngine.NET (transformed) 19,269 0.16

Table 6.3: Performance measurements for two of the tested applications, ChronoZoom.

Page Size is the size (in bytes) of the main HTML page rendered by the browser, and

Loading Time is the time (in seconds) that the browser took to load and display the

page.

6.5.4 Performance

To assess the impact of DEDACOTA on application performance, we ran browser-

based tests on original and transformed versions of two of the tested applications. Our

performance metric was page-loading time in Internet Explorer 9.0, mainly to deter-

mine the impact of moving inline JavaScript into separate files. The web server was a

3 GB Hyper-V virtual machine running Microsoft IIS 7.0 under Windows Server 2008

R2, while the client was a similar VM running Windows 7. The physical server was an

8 GB, 3.16 GHz dual-core machine running Windows Server 2008 R2.

192

Chapter 6. Toward Preventing Server-Side XSS

Table 6.3 shows test results for two web applications, summarizing performance

data from page-loading tests on the client. The table columns list the average sizes

of the main HTML pages retrieved by the browser by accessing the main application

URLs, along with the average time used by the browser to retrieve and render the pages

in their entirety. All the numbers were averaged over 20 requests.

As Table 6.3 indicates, DEDACOTA’s transformations incurred no appreciable dif-

ference in page-loading times. Because the original ChronoZoom page contained a

significant amount of script code, the transformed page is less than half of the origi-

nal size. On the other hand, the BlogEngine.NET page is slightly larger because of its

small amount of script code, which was replaced by longer links to script files. The

page-loading times mirror the page sizes, also indicating that server-side processing

incurred no discernible performance impact.

6.5.5 Discussion

The results of our rewriting shed light on the nature of inline JavaScript in web

applications. Of the four applications that have dynamic JavaScript, 12.2% to 77.8%

of the total inline JavaScript in the application is dynamic. This is important, because

one of BEEP’s XSS prevention policies is a whitelist containing the SHA1 hash of

allowed JavaScript [77]. Unfortunately, in the modern web JavaScript is not static and

193

Chapter 6. Toward Preventing Server-Side XSS

frequently includes dynamic elements, necessitating new approaches that can handle

dynamic JavaScript.

The other security policy presented in BEEP is DOM sandboxing. This approach

requires the developer to manually annotate the sinks so that they can be neutralized.

BLUEPRINT [93] works similarly, requiring the developer to annotate the outputs of

untrusted data. Both approaches require the developer to manually annotate the sinks

in the application in order to specify the trusted JavaScript. To understand the developer

effort required to manually annotate the sinks in the application, we counted the sinks

(i.e., TextWriter.Write call sites) inside the 29 Web Forms of BlogSA.NET and

there were 407. In order to implement either BEEP or BLUEPRINT a developer must

manually analyze all sinks in the application and annotate any that could create un-

trusted output.

Unlike BEEP and BLUEPRINT, DEDACOTA is completely automatic and does not

require any developer annotations. DEDACOTA cannot prevent XSS vulnerabilities in

dynamic inline JavaScript completely. If a developer wishes to prevent all XSS vul-

nerabilities after applying DEDACOTA, they would only need to examine the sinks that

occur within the unsafe dynamic inline JavaScript. In BlogSA.NET, there are three

sinks within the single unsafe dynamic JavaScript. One could further reduce the num-

ber of sinks by using taint analysis to check if untrusted input can reach a sink in the

dynamic JavaScript.

194

Chapter 6. Toward Preventing Server-Side XSS

6.6 Limitations

The goal of DEDACOTA is to automatically separate the JavaScript code from the

HTML data in the web pages of a web application using static analysis. We have

shown that DEDACOTA is effective with real-world web applications. In this section,

we discuss its limitations in general.

The programming language of .NET has the following dynamic language features:

dynamic assembly loading, dynamic compilation, dynamic run-time method calling

(via reflection), and threading. The use of these features may compromise the sound-

ness of any static analysis including ours in DEDACOTA. However, these language

features are rarely used in ASP.NET web applications in practice. For instance, those

applications we tested did not use any of these features. Furthermore, DEDACOTA is

affected only if the use of these features determines the HTML output of an application.

On one hand, we handle loops conservatively by approximating that a loop can

produce anything. On the other hand, we treat the output of a loop as a * in the approx-

imation graph and assume it does not affect the structure of the approximation graph in

a way that impacts our analysis. For instance, we assume the output of a loop does not

contain the opening or closing script tag. Our analysis will be incorrect if this assump-

tion is violated. While we found that this assumption holds for all the web applications

195

Chapter 6. Toward Preventing Server-Side XSS

we tested, it is possible that this assumption will not hold for other programs, thus

requiring a different approach to handling loops.

We do not offer any formal proof of the correctness of DEDACOTA. While we

believe that our approach is correct in absence of the dynamic language features, we

leave a formal proof of this to future work.

DEDACOTA currently supports the analysis of string concatenations. The support

for more complex string operations such as regular expressions is left for future work.

A potential approach is to leverage an automata-based string analysis engine [146].

Our approach to sanitizing dynamic JavaScript code may not preserve an applica-

tion’s semantics when the dynamic content being sanitized as a string is meant to be

used in multiple JavaScript contexts.

When deploying DEDACOTA in practice, we recommend two practices to mitigate

its limitations. First, all tests for the original web application should be performed on

the rewritten binary to detect any disruptions to the application’s semantics. Second,

CSP’s “Report Only” mode should be used during the testing and initial deployment.

Under this mode, the browser will report violations back to the web server when un-

specified JavaScript code is loaded. This helps detect inline JavaScript code that is

missed by DEDACOTA.

Finally, our prototype does not handle JavaScript code in HTML attributes. We do

not believe that there is any fundamental limitation that makes discovering JavaScript

196

Chapter 6. Toward Preventing Server-Side XSS

attributes more difficult than inline JavaScript. The only minor difficulty here is in the

rewriting. In order to separate a JavaScript attribute into an external JavaScript, one

must be able to uniquely identify the DOM element that the JavaScript attribute af-

fects. To do this, it would require generating a unique identifier for the HTML element

associated with the JavaScript attribute.

6.7 Conclusion

Cross-site scripting vulnerabilities are pervasive in web applications. Malicious

users frequently exploit these vulnerabilities to infect users with drive-by downloads or

to steal personal information.

While there is currently no silver bullet to preventing every possible XSS attack

vector, we believe that adhering to the fundamental security principle of code and data

separation is a promising approach to combating XSS vulnerabilities. DEDACOTA is a

novel approach that gets us closer to this goal, by using static analysis to automatically

separate the code and data of a web application. While not a final solution, DEDACOTA

and other tools that automate making web applications secure by construction are the

next step in the fight against XSS and other kinds of vulnerabilities.

197

Chapter 7

Conclusions

Throughout this dissertation, we have discussed and analyzed the state of web se-

curity today. I have proposed new approaches that aim to find vulnerabilities before a

malicious attacker has the chance. It is in this vein of preemptively finding vulnerabili-

ties that I believe will have the greatest return-on-investment. By finding vulnerabilities

early on in the development process, the vulnerabilities will be easier and cheaper to

fix.

In this spirit, for moving forward I see the web security community moving to

approaches that create web applications that are secure by construction. Therefore,

vulnerabilities can be prevented, just by designing an application in a certain way, or

perhaps by creating a new language or framework that is easy to statically analyze.

As shown throughout this dissertation, web application vulnerabilities are incredibly

prevalent, and show no signs of stopping. In order to counteract this trend, we require

novel ideas: new ways of designing applications, new tools to automatically find secu-

198

Chapter 7. Conclusions

rity vulnerabilities, or new approaches to web applications. The web is too important

to wait—we must take responsibly for securing this popular platform.

199

Bibliography

[1] B. Acohido. Hackers breach Heartland Payment credit card system. USA TO-

DAY, Jan. 23, 2009.

[2] Acunetix. Acunetix Web Vulnerbility Scanner. http://www.acunetix.

com/.

[3] D. Akhawe, P. Saxena, and D. Song. Privilege Separation in HTML5 Applica-

tions. In Proceedings of the USENIX Security Symposium (USENIX), 2012.

[4] D. Amalfitano, A. Fasolino, and P. Tramontana. Reverse Engineering Finite

State Machines from Rich Internet Applications. In Proceedings of the Working

Conference on Reverse Engineering (WCRE), 2008.

[5] AnantaSec. Web Vulnerability Scanners Evalua-

tion. http://anantasec.blogspot.com/2009/01/

web-vulnerability-scanners-comparison.html, Jan. 2009.

[6] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.

Finding Bugs in Web Applications Using Dynamic Test Generation and Explicit-

State Model Checking. IEEE Transactions on Software Engineering, 2010.

[7] ASP.NET MVC. http://www.asp.net/mvc.

[8] E. Athanasopoulos, V. Pappas, and E. P. Markatos. Code-Injection Attacks in

Browsers Supporting Policies. In Proceedings of the Workshop on Web 2.0 Se-

curity and Privacy (W2SP), 2009.

[9] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kruegel. A Solution

for the Automated Detection of Clickjacking Attacks. In Proceedings of the

ACM Symposium on Information, Computer and Communications Security (Asi-

aCCS), 2010.

200

http://www.acunetix.com/
http://www.acunetix.com/
http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-comparison.html
http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-comparison.html
http://www.asp.net/mvc

Bibliography

[10] M. Balduzzi, C. T. Gimenez, D. Balzarotti, and E. Kirda. Automated Discovery

of Parameter Pollution Vulnerabilities in Web Applications. In Proceedings of

the Symposium on Network and Distributed System Security (NDSS), 2011.

[11] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and

G. Vigna. Saner: Composing Static and Dynamic Analysis to Validate Sanitiza-

tion in Web Applications. In Proceedings of the IEEE Symposium on Security

and Privacy, 2008.

[12] D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna. Multi-module Vulnerability

Analysis of Web-based Applications. In Proceedings of the ACM Conference on

Computer and Communications Security (CCS), 2007.

[13] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for Cross-Site Request

Forgery. In Proceedings of the ACM Conference on Computer and Communica-

tions Security (CCS), 2008.

[14] J. Bau, E. Bursztein, D. Gupta, and J. C. Mitchell. State of the Art: Automated

Black-Box Web Application Vulnerability Testing. In Proceedings of the IEEE

Symposium on Security and Privacy, 2010.

[15] T. Berg, B. Jonsson, and H. Raffelt. Regular Inference for State Machines using

Domains with Equality Tests. In Proceedings of the International Conference on

Fundamental Approaches to Software Engineering (FASE), 2008.

[16] R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. O’Connor, S. Pfeif-

fer, and I. Hickson. HTML5. http://www.w3.org/TR/2014/

CR-html5-20140204/, Feb. 2014.

[17] N. Bilton and B. Stelter. Sony Says PlayStation Hacker Got Personal Data. The

New York Times, Apr. 27, 2011.

[18] P. Bisht and V. Venkatakrishnan. XSS-GUARD: Precise Dynamic Prevention of

Cross-Site Scripting Attacks. In Proceedings of the Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2008.

[19] blogengine.net - an innovative open source blogging platform. http://www.

dotnetblogengine.net, 2013.

[20] BlogSA.NET. http://www.blogsa.net/, 2013.

[21] B. Boe. UCSB’s International Capture The Flag Competition 2010 Challenge 6:

Fear The EAR. http://cs.ucsb.edu/˜bboe/r/ictf10, Dec. 2010.

201

http://www.w3.org/TR/2014/CR-html5-20140204/
http://www.w3.org/TR/2014/CR-html5-20140204/
http://www.dotnetblogengine.net
http://www.dotnetblogengine.net
http://www.blogsa.net/
http://cs.ucsb.edu/~bboe/r/ictf10

Bibliography

[22] B. Boe. Using StackOverflow’s API to Find the Top Web Frameworks.

http://cs.ucsb.edu/˜bboe/r/top-web-frameworks, Feb. 2011.

[23] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1st edition, 1981.

[24] BugTracker.NET - Free Bug Tracking. http://ifdefined.com/

bugtrackernet.html, 2013.

[25] Top in Frameworks - Week beginning Jun 24th 2013. http://trends.

builtwith.com/framework, 2013.

[26] D. Byrne. Grendel-Scan. http://www.grendel-scan.com/.

[27] Include exit with a redirect call. http://replay.web.archive.org/

20061011152124/https://trac.cakephp.org/ticket/1076,

Aug. 2006.

[28] docs should mention redirect does not “exit” a script. http://replay.

web.archive.org/20061011180440/https://trac.cakephp.

org/ticket/1358, Aug. 2006.

[29] Cake Software Foundation, Inc. The CakePHP 1.3 Book. http://book.

cakephp.org/view/982/redirect, 2011.

[30] L. Carettoni and S. Di Paola. HTTP Parameter Pollution. OWASP AppSec

Europe 2009, May 2009.

[31] A. Chaudhuri and J. Foster. Symbolic Security Analysis of Ruby-on-Rails Web

Applications. In Proceedings of the ACM Conference on Computer and Com-

munications Security (CCS), 2010.

[32] N. Childers, B. Boe, L. Cavallaro, L. Cavedon, M. Cova, M. Egele, and G. Vigna.

Organizing large scale hacking competitions. In Proceedings of the Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),

2010.

[33] Chinotec Technologies. Paros. http://www.parosproxy.org/.

[34] S. Chong, K. Vikram, and A. Myers. SIF: Enforcing confidentiality and in-

tegrity in web applications. In Proceedings of the USENIX Security Symposium

(USENIX), 2007.

202

http://cs.ucsb.edu/~bboe/r/top-web-frameworks
http://ifdefined.com/bugtrackernet.html
http://ifdefined.com/bugtrackernet.html
http://trends.builtwith.com/framework
http://trends.builtwith.com/framework
http://www.grendel-scan.com/
http://replay.web.archive.org/20061011152124/https://trac.cakephp.org/ticket/1076
http://replay.web.archive.org/20061011152124/https://trac.cakephp.org/ticket/1076
http://replay.web.archive.org/20061011180440/https://trac.cakephp.org/ticket/1358
http://replay.web.archive.org/20061011180440/https://trac.cakephp.org/ticket/1358
http://replay.web.archive.org/20061011180440/https://trac.cakephp.org/ticket/1358
http://book.cakephp.org/view/982/redirect
http://book.cakephp.org/view/982/redirect
http://www.parosproxy.org/

Bibliography

[35] Chronozoom - A Brief History of the World. http://chronozoom.

cloudapp.net/firstgeneration.aspx, 2013.

[36] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An Ap-

proach for the Anomaly-based Detection of State Violations in Web Applica-

tions. In Proceedings of the Symposium on Recent Advances in Intrusion Detec-

tion (RAID), 2007.

[37] C. Csallner, Y. Smaragdakis, and T. Xie. DSD-Crasher: A hybrid analysis tool

for bug finding. ACM Transactions on Software Engineering and Methodology

(TOSEM), 17(2):1–37, 2008.

[38] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking Rootkit Footprints with a

Practical Memory Analysis System. In Proceedings of the USENIX Security

Symposium (USENIX), 2012.

[39] M. Curphey and R. Araujo. Web Application Security Assessment Tools. IEEE

Security and Privacy, 4(4):32–41, 2006.

[40] CVE. Common Vulnerabilities and Exposures. http://www.cve.mitre.

org.

[41] CVE Details. Vulnerabilities by Type. http://www.cvedetails.com/

vulnerabilities-by-types.php, 2013.

[42] G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and U. De Carlini.

WARE: a tool for the Reverse Engineering of Web applications. In Proceed-

ings of the European Conference on Software Maintenance and Reengineering

(CSMR), 2002.

[43] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik, 1:269–271, 1959.

[44] Django. http://djangoproject.com, 2013.

[45] Django Software Foundation. Django shortcut functions. http://

docs.djangoproject.com/en/dev/topics/http/shortcuts/#

django.shortcuts.redirect, 2011.

[46] Ecma International. ECMAScript: A general purpose, cross-platform

programming language. http://www.ecma-international.

org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st

%20edition,%20June%201997.pdf, June 1997.

203

http://chronozoom.cloudapp.net/firstgeneration.aspx
http://chronozoom.cloudapp.net/firstgeneration.aspx
http://www.cve.mitre.org
http://www.cve.mitre.org
http://www.cvedetails.com/vulnerabilities-by-types.php
http://www.cvedetails.com/vulnerabilities-by-types.php
http://djangoproject.com
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf

Bibliography

[47] EllisLab, Inc. CodeIgniter User Guide Version 2.0.2. http://

codeigniter.com/user_guide/helpers/url_helper.html,

2011.

[48] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward Automated Detec-

tion of Logic Vulnerabilities in Web Applications. In Proceedings of the USENIX

Security Symposium (USENIX), 2010.

[49] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol – HTTP/1.1. http://

www.w3.org/Protocols/rfc2616/rfc2616.html, June 1999.

[50] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol – HTTP/1.1

Header Field Definitions. http://www.w3.org/Protocols/rfc2616/

rfc2616-sec14.html#sec14.30, June 1999.

[51] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol – HTTP/1.1 Sta-

tus Code Definitions. http://www.w3.org/Protocols/rfc2616/

rfc2616-sec10.html, June 1999.

[52] M. Fossi. Symantec Global Internet Security Threat Report. Technical report,

Symantec, Apr. 2009. Volume XIV.

[53] Foundstone. Hacme Bank v2.0. http://www.foundstone.com/us/

resources/proddesc/hacmebank.htm, May 2006.

[54] M. Furr, J. hoon (David) An, J. S. Foster, and M. Hicks. The Ruby Intermediate

Language. In Proceedings of the ACM SIGPLAN Dynamic Languages Sympo-

sium (DLS), 2009.

[55] Gargoyle Software Inc. HtmlUnit. http://htmlunit.sourceforge.

net/.

[56] J. J. Garrett. Ajax: A New Approach to Web Applications. http://www.

adaptivepath.com/ideas/essays/archives/000385.php, Feb.

2005.

[57] GitHub. http://github.com.

[58] Google. Google AutoEscape for CTemplate. http://code.google.com/

p/ctemplate/.

204

http://codeigniter.com/user_guide/helpers/url_helper.html
http://codeigniter.com/user_guide/helpers/url_helper.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.foundstone.com/us/resources/proddesc/hacmebank.htm
http://www.foundstone.com/us/resources/proddesc/hacmebank.htm
http://htmlunit.sourceforge.net/
http://htmlunit.sourceforge.net/
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://github.com
http://code.google.com/p/ctemplate/
http://code.google.com/p/ctemplate/

Bibliography

[59] J. Grossman. Challenges of Automated Web Application Scanning, 2004.

[60] M. V. Gundy and H. Chen. Noncespaces: Using Randomization to Enforce Infor-

mation Flow Tracking and Thwart Cross-Site Scripting Attacks. In Proceedings

of the Symposium on Network and Distributed System Security (NDSS), 2009.

[61] W. G. Halfond, S. R. Choudhary, and A. Orso. Penetration Testing with Im-

proved Input Vector Identification. In Proceedings of the IEEE International

Conference on Software Testing, Verification and Validation (ICST), 2009.

[62] O. Hallaraker and G. Vigna. Detecting Malicious JavaScript Code in Mozilla. In

Proceedings of the IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS), 2005.

[63] R. Hansen. Clickjacking. http://ha.ckers.org/blog/20080915/

clickjacking/, Sept. 2008.

[64] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk. Scriptless

Attacks: Stealing the Pie Without Touching the Sill. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS), 2012.

[65] J. Hoff. WebGoat.NET. https://github.com/jerryhoff/WebGoat.

NET, 2013.

[66] D. Hofstetter. Don’t forget to exit after a redirect.

http://cakebaker.wordpress.com/2006/08/28/

dont-forget-to-exit-after-a-redirect/, Aug. 2006.

[67] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast and Pre-

cise Sanitizer Analysis with BEK. In Proceedings of the USENIX Security Sym-

posium (USENIX), 2011.

[68] J. hoon An, A. Chaudhuri, and J. Foster. Static Typing for Ruby on Rails. In

Proceedings of the IEEE/ACM Conference on Automated Software Engineering

(ASE), 2009.

[69] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press, second

edition, 2003.

[70] HP. WebInspect. https://download.hpsmartupdate.com/

webinspect/.

205

http://ha.ckers.org/blog/20080915/clickjacking/
http://ha.ckers.org/blog/20080915/clickjacking/
https://github.com/jerryhoff/WebGoat.NET
https://github.com/jerryhoff/WebGoat.NET
http://cakebaker.wordpress.com/2006/08/28/dont-forget-to-exit-after-a-redirect/
http://cakebaker.wordpress.com/2006/08/28/dont-forget-to-exit-after-a-redirect/
https://download.hpsmartupdate.com/webinspect/
https://download.hpsmartupdate.com/webinspect/

Bibliography

[71] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web Application Security

Assessment by Fault Injection and Behavior Monitoring. In Proceedings of the

International World Wide Web Conference (WWW), 2003.

[72] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing

Web Application Code by Static Analysis and Runtime Protection. In Proceed-

ings of the International World Wide Web Conference (WWW), 2004.

[73] IBM. AppScan. http://www-01.ibm.com/software/awdtools/

appscan/.

[74] Indictment in U.S. v. Albert Gonzalez. http://www.justice.

gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-

%20Indictment%20080508.pdf, Aug. 2008.

[75] T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley-Interscience Series

on Discrete Mathematics and Optimization. Wiley, 1994.

[76] M. Jewell. Data Theft Believed to Be Biggest Hack. The Washington Post,

Mar. 29, 2007.

[77] T. Jim, N. Swamy, and M. Hicks. Defeating Script Injection Attacks with

Browser-Enforced Embedded Policies. In Proceedings of the International

World Wide Web Conference (WWW), 2007.

[78] M. Johns and C. Beyerlein. SMask: Preventing Injection Attacks in Web Appli-

cations by Approximating Automatic Data/Code Separation. In Proceedings of

the ACM Symposium on Applied Computing (SAC), 2007.

[79] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for Detect-

ing Web Application Vulnerabilities (Short Paper). In Proceedings of the IEEE

Symposium on Security and Privacy, 2006.

[80] N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias Analysis for Static Detec-

tion of Web Application Vulnerabilities. In Proceedings of the ACM SIGPLAN

Workshop on Programming Languages and Analysis for Security (PLAS), 2006.

[81] N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis for detecting taint-style

vulnerabilities in web applications. Journal of Computer Security, 18(5):861–

907, 2010.

[82] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBat: A Web Vulnerabil-

ity Scanner. In Proceedings of the International World Wide Web Conference

(WWW), 2006.

206

http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf

Bibliography

[83] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A Client-Side So-

lution for Mitigating Cross-Site Scripting Attacks. In Proceedings of the ACM

Symposium on Applied Computing (SAC), 2006.

[84] J. Kirk. BitCoin exchange loses $250,0000 after unencrypted keys stolen.

http://www.computerworld.com/s/article/9230919/

BitCoin_exchange_loses_250_0000_after_unencrypted_

keys_stolen, Sept. 5, 2012.

[85] A. Klein. “Divide and conquer”: HTTP Response Splitting, Web Cache Poison-

ing Attacks, and Related Topics. http://www.packetstormsecurity.

org/papers/general/whitepaper/httpresponse.pdf, 2004.

[86] A. Klein. DOM Based Cross Site Scripting or XSS of the Third Kind. http://

www.webappsec.org/projects/articles/071105.shtml, 2005.

[87] D. Kristol and L. Montulli. RFC 2109: HTTP State Management Mechanism.

http://www.w3.org/Protocols/rfc2109/rfc2109, Feb. 1997.

[88] X. Li and Y. Xue. BLOCK: A Black-box Approach for Detection of State Viola-

tion Attacks Towards Web Applications. In Proceedings of the Annual Computer

Security Applications Conference (ACSAC), 2011.

[89] X. Li, W. Yan, and Y. Xue. SENTINEL: Securing Database from Logic Flaws

in Web Applications. In Proceedings of the ACM Conference on Data and Ap-

plication Security and Privacy (CODASPY), 2012.

[90] B. Livshits and S. Chong. Towards Fully Automatic Placement of Security San-

itizers and Declassifiers. In Proceedings of the Symposium on Principles of Pro-

gramming Languages (POPL), 2013.

[91] B. Livshits and U. Erlingsson. Using Web Application Construction Frameworks

to Protect Against Code Injection Attacks. In Proceedings of the ACM SIGPLAN

Workshop on Programming Languages and Analysis for Security (PLAS), 2007.

[92] V. B. Livshits and M. S. Lam. Finding Security Vulnerabilities in Java Applica-

tions with Static Analysis. In Proceedings of the USENIX Security Symposium

(USENIX), 2005.

[93] M. T. Louw and V. Venkatakrishnan. BLUEPRINT: Robust Prevention of Cross-

site Scripting Attacks for Existing Browsers. In Proceedings of the IEEE Sym-

posium on Security and Privacy, 2009.

207

http://www.computerworld.com/s/article/9230919/BitCoin_exchange_loses_250_0000_after_unencrypted_keys_stolen
http://www.computerworld.com/s/article/9230919/BitCoin_exchange_loses_250_0000_after_unencrypted_keys_stolen
http://www.computerworld.com/s/article/9230919/BitCoin_exchange_loses_250_0000_after_unencrypted_keys_stolen
http://www.packetstormsecurity.org/papers/general/whitepaper/httpresponse.pdf
http://www.packetstormsecurity.org/papers/general/whitepaper/httpresponse.pdf
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://www.w3.org/Protocols/rfc2109/rfc2109

Bibliography

[94] M. Martin and M. S. Lam. Automatic Generation of XSS and SQL Injection

Attacks with Goal-Directed Model Checking. In Proceedings of the USENIX

Security Symposium (USENIX), 2008.

[95] S. McAllister, C. Kruegel, and E. Kirda. Leveraging User Interactions for In-

Depth Testing of Web Applications. In Proceedings of the Symposium on Recent

Advances in Intrusion Detection (RAID), 2008.

[96] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling AJAX by Inferring User

Interface State Changes. In Proceedings of the International Conference on Web

Engineering (ICWE), 2008.

[97] L. Meyerovich and B. Livshits. ConScript: Specifying and Enforcing Fine-

Grained Security Policies for JavaScript in the Browser. In Proceedings of the

IEEE Symposium on Security and Privacy, 2010.

[98] Microsoft. ASP.NET. http://www.asp.net/.

[99] Microsoft Research. Common Compiler Infrastructure. http://research.

microsoft.com/en-us/projects/cci/, 2013.

[100] Y. Nadji, P. Saxena, and D. Song. Document Structure Integrity: A Robust Basis

for Cross-Site Scripting Defense. In Proceedings of the Symposium on Network

and Distributed System Security (NDSS), 2008.

[101] A. Nguyen-tuong, S. Guarnieri, D. Greene, and D. Evans. Automatically Hard-

ening Web Applications Using Precise Tainting. In Proceedings of the IFIP

International Information Security Conference, 2005.

[102] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and

D. Zagorodnov. The Eucalyptus Open-Source Cloud-Computing System. In

Proceedings of the IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID), 2009.

[103] Open Security Foundation. OSF DataLossDB: Data Loss News, Statistics, and

Research. http://datalossdb.org/.

[104] Open Web Application Security Project (OWASP). OWASP SiteGenerator.

http://www.owasp.org/index.php/OWASP_SiteGenerator.

[105] Open Web Application Security Project (OWASP). OWASP WebGoat Project.

http://www.owasp.org/index.php/Category:OWASP WebGoat Project.

208

http://www.asp.net/
http://research.microsoft.com/en-us/projects/cci/
http://research.microsoft.com/en-us/projects/cci/
http://datalossdb.org/
http://www.owasp.org/index.php/OWASP_SiteGenerator

Bibliography

[106] Open Web Application Security Project (OWASP). Web Input Vector Extractor

Teaser. http://code.google.com/p/wivet/.

[107] Open Web Application Security Project (OWASP). OWASP Top Ten Project.

http://www.owasp.org/index.php/Top_10, 2010.

[108] OpenID Foundation. OpenID. http://openid.net/.

[109] C. Ortiz. Outcome of sentencing in U.S. v. Albert Gonzalez. http://www.

justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ

%20website%20info%205-11-10.pdf, Mar. 2010.

[110] PCI Security Standards Council. PCI DDS Requirements and Security Assess-

ment Procedures, v1.2, Oct. 2008.

[111] H. Peine. Security Test Tools for Web Applications. Technical Report 048.06,

Fraunhofer IESE, Jan. 2006.

[112] T. Pietraszek and C. V. Berghe. Defending against Injection Attacks through

Context-Sensitive String Evaluations. In Proceedings of the Symposium on Re-

cent Advances in Intrusion Detection (RAID), 2005.

[113] PortSwigger. Burp Proxy. http://www.portswigger.net/burp/.

[114] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose. All Your iFRAMEs

Point to Us. In Proceedings of the USENIX Security Symposium (USENIX),

2008.

[115] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In Proceedings

of the International Conference on Very Large Data Bases (VLDB), 2001.

[116] T. Reenskaug. Models - views - controllers. Technical report, Xerox Parc, 1979.

[117] A. Riancho. w3af – Web Application Attack and Audit Framework. http://

w3af.sourceforge.net/.

[118] W. Robertson. Detecting and Preventing Attacks Against Web Applications. PhD

thesis, University of California, Santa Barbara, June 2009.

[119] W. Robertson and G. Vigna. Static Enforcement of Web Application Integrity

Through Strong Typing. In Proceedings of the USENIX Security Symposium

(USENIX), 2009.

[120] Ruby on Rails. http://rubyonrails.org/, 2013.

209

http://code.google.com/p/wivet/
http://www.owasp.org/index.php/Top_10
http://openid.net/
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.portswigger.net/burp/
http://w3af.sourceforge.net/
http://w3af.sourceforge.net/
http://rubyonrails.org/

Bibliography

[121] RSnake. Sql injection cheat sheet. http://ha.ckers.org/

sqlinjection/.

[122] RSnake. XSS (Cross Site Scripting) Cheat Sheet. http://ha.ckers.org/

xss.html.

[123] M. Samuel, P. Saxena, and D. Song. Context-Sensitive Auto-Sanitization in

Web Templating Languages Using Type Qualifiers. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS), 2011.

[124] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A Sym-

bolic Execution Framework for JavaScript. In Proceedings of the IEEE Sympo-

sium on Security and Privacy, 2010.

[125] P. Saxena, D. Molnar, and B. Livshits. SCRIPTGARD: Automatic Context-

Sensitive Sanitization for Large-Scale Legacy Web Applications. In Proceed-

ings of the ACM Conference on Computer and Communications Security (CCS),

2011.

[126] D. Scott and R. Sharp. Abstracting Application-Level Web Security. In Proceed-

ings of the International World Wide Web Conference (WWW), 2002.

[127] ScrewTurn Wiki. http://www.screwturn.eu/, 2013.

[128] S. Small, J. Mason, F. Monrose, N. Provos, and A. Stubblefield. To Catch a

Predator: A Natural Language Approach for Eliciting Malicious Payloads. In

Proceedings of the USENIX Security Symposium (USENIX), 2008.

[129] SPI Dynamics. Complete Web Application Security: Phase 1 – Building Web

Application Security into Your Development Process. SPI Dynamics Whitepa-

per, 2002.

[130] SpringSource. Contollers - Redirects. http://www.grails.org/

Controllers+-+Redirects, 2010.

[131] S. Stamm, B. Sterne, and G. Markham. Reining in the Web with Content Security

Policy. In Proceedings of the International World Wide Web Conference (WWW),

2010.

[132] C. Steve and R. Martin. Vulnerability Type Distributions in CVE. Mitre report,

May, 2007.

210

http://ha.ckers.org/sqlinjection/
http://ha.ckers.org/sqlinjection/
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://www.screwturn.eu/
http://www.grails.org/Controllers+-+Redirects
http://www.grails.org/Controllers+-+Redirects

Bibliography

[133] Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web

Applications. In Proceedings of the Symposium on Principles of Programming

Languages (POPL), 2006.

[134] L. Suto. Analyzing the Effectiveness and Coverage of Web Application Security

Scanners. Case Study, Oct. 2007.

[135] L. Suto. Analyzing the Accuracy and Time Costs of Web Application Security

Scanners, Feb. 2010.

[136] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ: Effective

Taint Analysis of Web Applications. In Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), 2009.

[137] A. van Kesteren and D. Jackson. The XMLHttpRequest Object. http://www.

w3.org/TR/2006/WD-XMLHttpRequest-20060405/, Apr. 2006.

[138] M. Vieira, N. Antunes, and H. Madeira. Using Web Security Scanners to Detect

Vulnerabilities in Web Services. In Proceedings of the Conference on Depend-

able Systems and Networks (DSN), 2009.

[139] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-

Site Scripting Prevention with Dynamic Data Tainting and Static Analysis. In

Proceedings of the Symposium on Network and Distributed System Security

(NDSS), 2007.

[140] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to Shop for Free Online -

Security Analysis of Cashier-as-a-Service Based Web Stores. In Proceedings of

the IEEE Symposium on Security and Privacy, 2011.

[141] G. Wassermann and Z. Su. Sound and Precise Analysis of Web Applications for

Injection Vulnerabilities. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2007.

[142] J. Weinberger, A. Barth, and D. Song. Towards Client-side HTML Security

Policies. In Proceedings of the USENIX Workshop on Hot Topics in Security

(HotSec), 2011.

[143] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song. A

Systematic Analysis of XSS Sanitization in Web Application Frameworks. In

Proceedings of the European Symposium on Research in Computer Security (ES-

ORICS), 2011.

211

http://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/
http://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/

Bibliography

[144] A. Wiegenstein, F. Weidemann, M. Schumacher, and S. Schinzel. Web Appli-

cation Vulnerability Scanners—a Benchmark. Technical report, Virtual Forge

GmbH, Oct. 2006.

[145] Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in Script-

ing Languages. In Proceedings of the USENIX Security Symposium (USENIX),

2006.

[146] F. Yu, M. Alkhalaf, and T. Bultan. STRANGER: An Automata-based String

Analysis Tool for PHP. In Proceedings of the International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), 2010.

[147] Zend Technologies Ltd. Zend Framework: Documentation: Action

Helpers - Zend Framework Manual. http://framework.zend.com/

manual/en/zend.controller.actionhelpers.html#zend.

controller.actionhelpers.redirector, 2011.

212

http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Listings
	Introduction
	History of Web Applications
	Web Application Vulnerabilities
	Injection Vulnerabilities
	Logic Flaws

	Securing Web Applications
	Anomaly Detection
	Vulnerability Analysis Tools

	Securing the Web

	Related Work
	Evaluating Black-Box Web Vulnerability Scanners
	Black-Box Vulnerability Scanners
	Automated Discovery of Logic Flaws
	Cross-Site Scripting Defense
	Server-Side Methods
	Client-Side Methods

	An Analysis of Black-Box Web Application Vulnerability Scanners
	Background
	Web Application Vulnerabilities
	Web Application Scanners

	The WackoPicko Web Site
	Design
	Vulnerabilities
	Crawling Challenges

	Experimental Evaluation
	Setup
	Detection Results
	Attack and Analysis Capabilities
	Crawling Capabilities

	Lessons Learned
	Conclusions

	A State-Aware Black-Box Web Vulnerability Scanner
	Motivation
	State-Aware Crawling
	Web Applications
	Inferring the State Machine

	Technical Details
	Clustering Similar Pages
	Determine the State-Changing Request
	Collapsing Similar States
	Navigating

	State-Aware Fuzzing
	Evaluation
	Experiments
	Results

	Limitations
	Conclusion

	Discovering and Mitigating Execution After Redirect Vulnerabilities
	Overview of EARs
	EAR History
	EARs as Logic Flaws
	Types of EARs
	Framework Analysis
	EAR Security Challenge

	EAR Detection
	Detection Algorithm
	Limitations

	Results
	Detection Effectiveness
	Performance

	Prevention
	Conclusions

	Toward Preventing Server-Side XSS via Automatic Code and Data Separation
	Background
	Cross-Site Scripting
	Code and Data Separation
	Content Security Policy

	Threat Model
	Design
	Example
	Approximating HTML Output
	Extracting Inline JavaScript
	Application Rewriting
	Dynamic Inline JavaScript
	Generality

	Implementation
	Evaluation
	Applications
	Security
	Functional Correctness
	Performance
	Discussion

	Limitations
	Conclusion

	Conclusions
	Bibliography

