UNIVERSITY OF CALIFORNIA
Santa Barbara

Advanced Automated Web Application
Vulnerability Analysis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
by
Adam Loe Doug

Committee in Charge:
Professor Giovanni Vigna, Chair
Professor Christopher Kruegel

Professor Ben Hardekopf

September 2014

The Dissertation of
Adam Loe Doupé is approved:

Professor Christopher Kruegel

Professor Ben Hardekopf

Professor Giovanni Vigna, Committee Chairperson

April 2014

Advanced Automated Web Application Vulnerability Analysi

Copyright © 2014

by

Adam Loe Doupé

Acknowledgements

| would like to thank the following people who, with their lexand support, encour-
aged and motivated me to nish this dissertation.

Giovanni is the reason that | became addicted to computeriggcFrom the mo-
ment that | took his undergrad security class | was hookedn faever indebted to
him because he has constantly invested his time in me. Bystviting me to join
his hacking club. Then, he took a chance on mentoring a Mastieldent, and, upon
graduation for my Master's degree, told me that | could “cdraek for the real thing.”
One year later | did, and | don't regret it for a second. | hdpet i always have the
enthusiasm and energy that Giovanni brings to researchidHe is truly a role
model.

From Chris, | learned a great deal about what it means to beageaic and a
scientist. He is able to focus so intensely on the detailb®fptoject while not loosing
sight of the bigger picture—if | am able to do this half as weliill consider myself a
success. He constantly inspires and encourages me to $ieighter dreamed possible.

| would never have been able to nish this dissertation withthe help and encour-
agement of all the past and current seclab members. | ameiogeateful to the now
departed members of the seclab who were here when | startédasters. You took

me under your wing, taught me, and created and infused witleitheseclab culture.

| would like to thank: Wil, Vika, Sean, Nick, Brett, LorenzBede, Martin, Max, and
especially Marco, for his wisdom and guidance.

The only way | was able to stay sane during my PhD was becausg tellow sec-
lab members. We forged a bond during those 3am deadline§, &lFhighters, walks
to Freebirds!, costume parties, and soccer games—a borth widkes us brothers-in-
arms. In no particular order, thanks to: Gianluca, Alexasdtuca, Antonio, Gorkem,
Ali, Patrick, Kevin, Jacopo, Dhilung, Kyle, Yan, Fish, Babydo, Manuel, Gregoire,
and Bryce.

A very special thanks to my Mom, Dad, and brother for theirelosupport, and
constant ribbing and teasing.

And nally, thank you Becca, for being my rock.

Curriculum Vitee

Adam Loe Doug

Education
2010 -2014 PhD in Computer Science
University of California, Santa Barbara
2008 — 2009 Master's Degree in Computer Science
University of California, Santa Barbara
2004 — 2008 Bachelor's Degree in Computer Science with Honor

University of California, Santa Barbara

Research Experience

2010 -2014 Research Assistant, University of Californamt& Barbara

2013 Summer Visiting PhD Student, Stanford University

Advisor: John C. Mitchell

2012 Summer Research Intern, Microsoft Research

Advisor: Weidong Cui

2009 Research Assistant, University of California, SardaebBra

Vi

Industry Experience

2009 — 2010 Software Developer Engineer, Microsoft

2008 Summer Software Developer Engineer Intern, Microsoft
2007 — 2008 Software Developer, AT&T Government Solutions
2005 - 2010 Founder/Developer, WootWatchers.com

2004 — 2005 Mobile Product Manager, VCEL, Inc.

Teaching Experience

October 2013 Taught class lecture for undergraduate $gatldss on web secu-
rity, and created web application vulnerability homewogkrbquest
of Richard Kemmerer

Fall 2013 Co-created and Co-taught “Recent Trends in CompiResearch,” a
2-unit seminar graduate class

November 2012 Created web application vulnerability hoorvand designed in-class
lecture for undergraduate security class by request ofdRictKem-
merer

April 2012 Created and ran a three hour hands-on workshoCab&hta Barbara
by request of the Web Standard Group entitled “Into the Mihthe
Hacker”

October 2011 Taught class on crypto analysis for undergitadsecurity class by

request of Richard Kemmerer

vii

Fall 2010 Teaching Assistant for CS 279 (Advanced Topicsom@uter Secu-
rity), won Outstanding Teaching Assistant Award from thar(oiter
Science Department

Fall 2008 Teaching Assistant for CS 177 (Introduction to @ater Security),
won Outstanding Teaching Assistant Award from the Comp8ts¥

ence Department

viii

Abstract

Advanced Automated Web Application Vulnerability
Analysis

Adam Loe Doupé

Web applications are an integral part of our lives and caltiWe use web applica-
tions to manage our bank accounts, interact with friendd, nour taxes. A single
vulnerability in one of these web applications could allomalicious hacker to steal
your money, to impersonate you on Facebook, or to accesgigemsformation, such
as tax returns. It is vital that we develop new approachesdcoder and X these
vulnerabilities before the cybercriminals exploit them.

In this dissertation, | will present my research on secutirggweb against current
threats and future threats. First, | will discuss my workmipioving black-box vulner-
ability scanners, which are tools that can automaticabgaler vulnerabilities in web
applications. Then, | will describe a new type of web appiaavulnerability: Exe-
cution After Redirect, or EAR, and an approach to autombyicketect EARs in web
applications. Finally, | will present deDacota, a rst stigpthe direction of making

web applications secure by construction.

Contents

Acknowledgements

Curriculum Vitee

Abstract

List of Figures

List of Tables

Listings

1 Introduction

11
1.2

1.3

1.4

History of Web Applications
Web Application Vulnerabilities
1.2.1 Injection Vulnerabilities.
1.22 LogicFlaws.
Securing Web Applications.,
1.3.1 AnomalyDetection.
1.3.2 \Vulnerability AnalysisTools
SecuringtheWeb. L o

2 Related Work

2.1
2.2
2.3
2.4

Evaluating Black-Box Web Vulnerability Scanners.
Black-Box Vulnerability Scanners
Automated Discovery of LogicFlaws
Cross-Site ScriptingDefense oL
2.4.1 Server-Side Methods.

xiii
Xiv

XV

2.4.2 Client-Side Methods
3 An Analysis of Black-Box Web Application Vulnerability Scanners
3.1 Background.
3.1.1 Web Application Vulnerabilities
3.1.2 Web Application Scanners.
3.2 The WackoPickoWeb Site.
3.21 Design.
3.2.2 \Mulnerabilities. o oo
3.2.3 CrawlingChallenges.
3.3 Experimental Evaluation.
331 Setup
3.3.2 DetectionResults. oL
3.3.3 Attack and Analysis Capabilities
3.3.4 Crawling Capabilities.
3.4 Lessonslearned.
3.5 Conclusions.

4 A State-Aware Black-Box Web Vulnerability Scanner
4.1 Motivation

4.2 State-AwareCrawling. Lo
4.2.1 Web Applications. L.
4.2.2 Inferring the State Machine

4.3 TechnicalDetails
4.3.1 Clustering SimilarPages.
4.3.2 Determine the State-Changing Request.
4.3.3 Collapsing SimilarStates
434 Navigating.

4.4 State-Aware Fuzzing

4.5 Evaluation.
451 Experiments
452 Results

4.6 Limitations.

4.7 Conclusion

5 Discovering and Mitigating Execution After Redirect Vulnerabilities

51 OverviewofEARS.
5.1.1 EARMHistory.
5.1.2 EARsaslogicFlaws.
5.1.3 TypesofEARS

Xi

5.2

5.3

5.4
5.5

5.1.4 Framework Analysis.

5.1.5 EAR Security Challenge.
EARDetection
5.2.1 Detection Algorithm
5.2.2 Limitations
Results. e
5.3.1 Detection Effectiveness
5.3.2 Performance
Prevention. e
ConcClusions. e

Toward Preventing Server-Side XSS

6.1

6.2

6.3

6.4
6.5

6.6
6.7

Background
6.1.1 Cross-Site Scripting oL
6.1.2 Code and Data Separation
6.1.3 Content Security Policy
ThreatModel
Design.
6.3.1 Example.
6.3.2 Approximating HTML Qutput
6.3.3 Extracting InlineJavaScript
6.3.4 Application Rewriting.
6.3.5 Dynamic Inline JavaScript.
6.3.6 Generality.
Implementation.
Evaluation.
6.5.1 Applications.
6.5.2 Security.
6.5.3 Functional Correctness
6.54 Performance
6.5.5 DISCUSSION
Limitations.
Conclusion

7 Conclusions

Bibliography

Xii

List of Figures

11
1.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

6.1
6.2
6.3

Example interaction between a web browser and a webrserve . .
Sample web application with server-side code and a ds¢ab. . . .

Detection performance of the scanners.
Scannerrunningtimes..
Dominatesgraph.. L
WIVETresults.

Navigation graph of a simple web application.
State machine of a simple web application..
The state machine of a simple e-commerce application.
A page's link vectors storedinaprextree..
Abstract Page Treeexample.
Graph of scanner code coverageresults..
State machine that state-aware-scanner inferred fok&W®acko v2. .

The logical ow of the white-boxtool.
Control Flow Graph for the code shown in Listing5.4..

Approximation graph for the code in Listing 6.1 and Ligt6.2. . . .
Approximation graph with branchesandaloop..
ASP.NET control parent-child relationship example..

Xiii

3
5

57
58
63
72

85
85
90
96
97
117
121

143
147

174

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2

6.1
6.2
6.3

Characteristics of the scanners evaluated. 54
Detection results of the scanners.. 56
False positives. 60
Vulnerabilityscores. Lo o 64
Finalranking. 65
Number of accesses to vulnerable web pages.. 79
Accountcreation.. 80
Applications used to evaluate the scanners. 107
Black-box web vulnerability scanners that we compared.. 112
Code coverage results of the scanners.. 116
Results of running white-box detector. 151
Results of manually inspecting all vulnerable EARs.. 153
ASP.NET Web Form applications used in the evaluation. 187
Results of th®@EDACOTA evaluation.. 192
Performance measurements after runmBBACOTA. 192

Xiv

Listings

11
1.2

4.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3

Example of an SQL injection vulnerability.
Example of a XSS vulnerability.

Psuedocode for fuzzing state-changing request..

Example of an Execution After Redirect (EAR) vulneraail.
Example of a complex Execution After Redirect vulndigbi
Example of an information leakage EAR vulnerability..
Example of a potential false positive.
True positive EAR vulnerability example..

Example of a simple ASP.NET Web Form page..
The compiled C# output of Listing6.1.
The result of the rewriting algorithm applied to Listi&g.

XV

Chapter 1

Introduction

Web applications are a fundamental part of our lives anducelt\We use web ap-
plications in almost every facet of society: socializinghking, health care, taxes,
education, news, and entertainment, to name a few. Thesapygdications are always
available from anywhere with an Internet connection, amy #nable us to communi-
cate and collaborate at a speed that was unthinkable just ddeades ago.

As more and more of our lives and data move to web applicatioaskers have
shifted their focus to web applications. In 2011, hackestest million usernames and
passwords from Sony [17]. In 2007, hackers stole 45 millisstomer credit cards from
TJ Maxx [76]. In 2009, hackers stole 100 million customeddreards from Heartland
Payment Systems [1]. In 2012, hackers stole 24,000 Bittdinm BitFloor, a major

Bitcoin exchange [84]. What all of these instances have mroon is that hackers

1These Bitcoins are worth about $10 million at this time oftimg.

Chapter 1. Introduction

exploited vulnerabilities in a web application to steaheitusernames and passwords,
credit cards, or Bitcoins.

Those same properties that make web applications so ateastusers also attract
hackers. A web application never closes, so they are alwagitable for hackers.
Web applications also house a vast treasure-trove of ddtizhvhhackers can use for
monetary gain. Finally, as we will explore in the next settizveb applications are
a complex hodgepodge of various technologies. This contgleombined with the
intense time-to-market pressure of companies and peoalétlild web applications,
is a breeding ground for bugs and vulnerabilities.

The situation is dire. We must focus on new ways to secure \pphcations from
attack. We must develop new tools in order to nd the vulnditds before a hacker

does. We must, because web applications and the data thieyasgéatoo important.

1.1 History of Web Applications

The World Wide Web was created by Sir. Tim Berners-Lee in 1889 means of
sharing information for the CERN research organizationat¥egan as a way to share
simple hyper-linked textual documents over the nasceetmet quickly exploded in

popularity over the proceeding years.

Chapter 1. Introduction

I"#
I$H

Figure 1.1: Example interaction between a web browser andkaserver. In (1), the
web browser makes an HTTP request to the webserver, andting2)eb server sends
the web browser an HTTP response containing the HTML of the page.

The core of the web has remained relatively the same thraudhe years: a web
browser (operated by a user) connects to a web server usingytpertext Transfer
Protocol (HTTP) [49]. The web server then sends back a resdypically in the form
of a HyperText Markup Language (HTML) page [16]. The web lsenthen parses
the raw HTML page to create a graphical web page that is displ#o the user. The
fundamental underlying principle, and the de nition of Hyfext, is that an HTML
page contains links totherHTML pages.

Figure 1.1 shows a graphical representation of the interadietween the web
browser and the web server. In (1), the web browser will mak&l&TP request to
the web server, to request a resource. Then, the web seflezspiond, as in (2), with
an HTTP response which contains the HTML of the requestedpage.

The beginning of the web was envisioned as a set of documeifidimks pointing
to other documents In other words, the web was mostly a set of read-only doctisnen

(from the perspective of the user with the web browser). Thishere the termwveb

2This is where the namwebcomes from, as each link forms a strand in the web.

Chapter 1. Introduction

site comes from: a web site is typically thought of as a collectidrlocuments that
exist under the same domain name.

As the web evolved, web sites started to shift from statiadrenly documents.
Developers realized that the HTML response returned toltbetcould be dynamic—
that is, the content of the HTML response could vary prograiially. This shift in
thinking caused web sites to transitionvieb applicationsvhich emulated features of
traditional desktop applications. Web applications eedlscenarios that caused the
web's popularity to increase: e-commerce, news sites, aigthased email clients. It
is hard to overstate the impact that web applications hatit@uptake of the web.

Now, with web applications, the architecture of the web gsth When the web
browser makes an HTTP request to the server, instead ohnetua static HTML
response, the web server typically will invoke server-sidde. This server-side code
is responsible for returning a response, typically HTMLthe browser. The server-
side code can use any number of inputs to determine the respbut typically the
server-side code reads the parameters sent in the browSEFB request, consults an
SQL database, and returns an HTML response.

Figure 1.2 shows an example web application with a back-€yddatabase. Now,
when the web browser sends an HTTP request to the web ajpmticas in (1), the web
application's server-side code will start to execute. Then(2) shows, the server-side

code can make one or more request to the SQL database, whartesxéhe queries

Chapter 1. Introduction

(T’ I$#

@ < \&# >JJ< 195t

Figure 1.2: Sample web application with servers-side codieacback-end database. In
(1), the web browser makes an HTTP request to the web agplicathen the server-
side code can issue one or more SQL queries to the back-endd&@base, shown
as (2). The SQL server returns the data in (3), which the welicgtion will use to
generate an HTTP response with HTML, as in (4).

= (i

and returns the data to the server-side code in (3). Firtalywveb application nishes
processing the request and sends an HTTP response with arh. M/ERI page to the
web browser in (4).

The HTTP mechanism is, by design, stateless: Each HTTP setjuat the web
server receives is independent of any other request. If utlito build an interactive
application on top of a stateless protocol, thus a standasddeveloped to add state to
the HTTP protocol [87]. This standard added toekiemechanism to the HTTP layer.
In this way, a web server can ask the web browser to set a gabkie, in subsequent
requests, the web browser will include the cookie. Thersfarweb server or web
application can link the requests intsassiorbased on the common cookie and thus
develop state-aware web applications.

Even after the advent of web applications, the server-siie avould return an
HTML page that was statically rendered and displayed to $lee. (fo change to content

on the page or otherwise interact with the web applicatiba,drowser must perform

Chapter 1. Introduction

another HTTP request and receive a response based on adinkehclicked or a form
the user submitted. In 1997, Brendan Eich, a programmerischlpe, created a client-
side scripting language called JavaScript [46]. The usezls browser implemented an
interpreter for this scripting language so that it could ipalate the web page. Now,
with JavaScript, web developers could programmaticaligrahe content on the web
page without making a request to the web server. The naljpiic which enabled
web applications to truly rival traditional applicationsasvthe creation and standard-
ization of the XMLHttpRequest JavaScript API [137]. ThisliHowed the client-side
JavaScript code to make asynchronous requests to the whtadipm and then update
the content of the web page according to the response fromebepplication. Com-
bined together, these web application development teolgied came to be known as
AJAX [56], which rivaled traditional desktop applicatiomsfunctionality.

This architecture of a web application is what we will usetighout this chapter to
discuss the security aspects of web applications. In tissediation, other details and

complexities of web applications will be explained in thepter where it is needed.

1.2 Web Application Vulnerabilities

The security properties of a web application are similahtdecurity of any other

software system: con dentially of the data, integrity oéttata, and availability of the

Chapter 1. Introduction

application. In this dissertation, we will focus on atta¢tkat compromise the con -

dentially or integrity of the web application's data.

1.2.1 Injection Vulnerabilities

This class of vulnerabilities occur when an attacker is &bt®ntrol or in uence the
value of parameters that are used as part of an odtgiggry, command, or language.
If the attacker can manipulate and change the semanticsajukry, command, or
language, and this manipulation compromises the securttyecapplication, then that
is an injection vulnerability.

There are many types of injection vulnerabilities in webleggpions, and the types
depend on the query, command, or language that is beingedjethese include SQL
gueries, HTML responses, OS commands, email headers, H€&éehs, and many
more. Next we will focus on two of the most serious and praviadéasses of injection

vulnerabilities in web applications: SQL injection and €seSite Scripting (XSS).

SQL Injection

SQL injection vulnerabilities, while declining in the nuerreported compared to

XSS vulnerabilities, are still numerous and are increddsltical when they occur.

3Qutside from the perspective of the web application's seside language.

Chapter 1. Introduction

1 $name = $_GET[name];
2$q = "select + from users where name = " . $name . ";";
3 $result = mysql_query ($q);

Listing 1.1: Example of an SQL injection vulnerability in &P web application. The
attacker-controlle@name parameter is used unsanitized in the SQL query created on
Line 2 and issued on Line 3.

The root cause of SQL injection vulnerabilities is that tieever-side code of the
web application, to issue an SQL query to the SQL databaseatenates strings to-
gether. This format allows the queries to be parameteraaditherefore the server-side
code can be more general.

The code in Listing 1.1 shows a sample PHP web applicatiarctirgains an SQL
injection vulnerability. In Line 1 of this sample, the vasla$name is set based on the
value of the query parameter calledme. The $name variable is used in Line 2 to
construct an SQL query to look up the given user by name in @k &bleusers .
The web application issues the query on Line 3.

The problem is that, according to the server-side langutgeresulting query is
simply a string, whereas when that string is passed to the &Qler, the SQL server
parses the string into a SQL query. Therefore, what the ssigle code treats as a
simple string is a complex language with syntax and semsntic

In Listing 1.1, the vulnerability comes from the fact thag tjuery parameterame
comes from the user and therefore may be modi ed by an attacke seen in the

example, thebname variable is used in the SQL query to select based on the SQL

Chapter 1. Introduction

name column. In order to do this, the programmer constrains theeveo be in be-
tween matching which is SQL query syntax for delimiting data. Therefore; thoe
attacker to alter the semantics of the query, the attaclet agly input something like
the following: or 1=1; # . This input would cause the SQL query that the web
application issues to the database to be the following:

select * from users where name = or 1=1; #:

The# is an SQL comment which means that everything after thatengtirery is
ignored. Now the attacker has been able to alter the sersaritihe SQL query, in this
case by adding another SQL clause (1=1) that was not in the original statement.

Thus, in order for an attacker to not alter the semantics ®3QL query, a web
developer must be careful to propedgnitizeall potentially attacker-controlled input.
Here, sanitize means to transform the input from the user farra that renders it
neutral in the target language. In the case of SQL, this &lfyiecneans converting any

(which are used by an attacker to escape out of an SQL quetiy¢ ioertn .

With an SQL injection vulnerability, an attacker can viedtoth the con dentially
and integrity of the application's data. An attacker caremsrbitrary data into the
database, potentially adding a new admin user to the welicagiph. Also, an attacker
can ex ltrate any data that the database user can accessaltyrall data that the web

application can access). Finally, the attacker can alsstelall of the web application's

Chapter 1. Introduction

data. All of these consequences are the result of a singlei§@ttion vulnerability,
and that is why SQL injection vulnerabilities can critigalompromise a web applica-
tion's security.

To prevent SQL injections with sanitization, a developesthe extremely careful
that no user-supplied data is used in an SQL statementdimgj@any paths that the data
could have taken through the web application. In practius,is (understandably) dif-

cult for developers to always accomplish. Therefore, depers should usprepared
statementswhich is a way to tell the database the structure of an SQLygbefore
the data is given. In this way, the database already knowsttheture of the SQL
guery, and therefore there is no way for an attacker to diestructure and semantics
of the query. Almost every server-side language or framk\was support for prepared
statements. Unfortunately, even with widespread suppoprepared statements, SQL

injections are still frequently found in web applications.

Cross-Site Scripting

Cross-Site Scripting (XSS) vulnerabilities are similaspirit to SQL injection vul-
nerabilities. Instead of an injection into a SQL query, X$$erabilities are injections
into the HTML output that the web application generates. X8Berabilities are fre-

guently in the top three of reported vulnerabilitiesalhsoftware systems.

10

Chapter 1. Introduction

1 $name = $_GET[name];
2 echo "Hello " . $name . "";

Listing 1.2: Example of a XSS vulnerability in a PHP web apation. The attacker-
controlled$name parameter is used unsanitized in the HTML output on Line 2.

The root cause of XSS vulnerabilities is that the servee-smtle of a web applica-
tion, in order to create the web application's HTML respgressentially concatenates
strings together.

Listing 1.2 shows an example PHP web application that has@® Yulnerability.
In Line 1, the variablébname is retrieved from the query parameteame. Then,
$name is used in Line 2 as an argument to PHB&ho function, which sends its
string argument to the HTTP response. The goal of this codie @itput the user's
name in bold. This is accomplished in HTML by wrapping therlsseame in a bold
tag).

If an attacker is able to control the HTML output of the web laggdion, as the
$name parameter in Listing 1.2, then the attacker can trick the'siseeb browser into
executing the attacker's JavaScript. This can be accohgaligh a variety of ways, one
example would be inputting the following for ti@me query parameter:

<script>alert('xss');</script>

Matching <script> HTML tags is the way for the web application to tell the

user's browser to execute JavaScript.

11

Chapter 1. Introduction

The fundamental building block of JavaScript security ia theb browser is the
Same Origin Policy In essence, this security policy means that only JavaSitrat
comes from the same oridisan interact. In practice, what this means is that JavaScrip
running on a web browser frotracker.com cannot interact with or affect JavaScript
running on the same web browser frexample.com .

The nameCross-Site Scriptings derived from the fact that XSS circumvents the
browser's Same Origin Policy. By using an XSS vulnerahilgy attacker is able to
trick a user's browser to execute JavaScript code of thedosimg in the web appli-
cation's origin. This is because, from the browser's pectipe, the JavaScript came
from the web application, so the browser happily executesatiacker's JavaScript
along with the web application's JavaScript.

With an XSS vulnerability, an attacker can compromise a wghlieation signi -
cantly. A popular XSS exploitation technique is to stealvlad application's cookies
and send them to the attacker. Typically the web applicaticookies are used to au-
thenticate and keep state with the web application, whialiccallow the attacker to
impersonate the user.

By executing JavaScript in the same origin as the web apjgitathe attacker's
JavaScript has total control over the graphical appearahttee web page. What this

means is that the attacker can completely alter the lookeofvib page, and could, for

4Here, we omit the de nition of the same origin. We will de nelater in the dissertation when
necessary.

12

Chapter 1. Introduction

instance, force the page to resemble the web applicatiogis form. However, once

the user puts their information into the form, the attackdevaScript could steal that
information. In this way, the attacker is able to phish therisscredentials, except in

this instance the user is on the proper domain name for theayelication.

Another insidious thing that an attacker's JavaScript carifdt executes in the
user's browser is interact with the web application on bebfthe use?. In practice,
what this means is that the attacker's JavaScript can ictterigh the web application,
and the web application has no way of knowing that the reguidtnot come from the
user. Imagine an attacker's JavaScript sending emails @esibehalf or initiating a
bank transfer.

XSS vulnerabilities can be xed by proper sanitizaiton dt@ogram points in
the web application that output HTML. This sanitization gges typically will convert
entities that are signi cant in parsing HTML to their disglaquivalent. For instance,
the HTML < character is transformed to its HTML entity equivalédt; , which
means to display & character on the resulting web page, rather than startih{raL
tag.

There are a number of practical dif culties that make prédpaanitizing output
for XSS vulnerabilities particularly challenging (esplyi when compared to SQL

injection vulnerabilities). One dif culty is that, as shomby Saxena, Molnar, and

5This defeats any CSRF protection that the web applicatisrehabled, as the attacker's JavaScript
can read the web application's CSRF tokens.

13

Chapter 1. Introduction

Livshits [125], there are numerous types of sanitizationX8S vulnerabilities, and
which type of sanitization to use dependswinerethe output is used in the resulting
HTML page. This means that the developer must reason notaiyt all program
paths that a variable may take to get to a speci ¢ programtgtansee if an attacker
can in uence its value), but also about all the differentggla in the HTML output
where the variable is used. The complex nature of XSS vubiléras contribute to the
reason that it is still the most frequent web applicatiomeuhbility.

Unfortunately XSS vulnerabilities have no easy, widelymuped X, as prepared
statements are to SQL injection vulnerabilities. HoweweChapter 6 we will look at

an approach to fundamentally solve a large class of XSS rathilgies.

1.2.2 Logic Flaws

Logic aws are a class of vulnerabilities that occur when thgplemented logic
of the web application does not match with the developetisnded logic of the web
application. One popular example would be, on an ecommegpkcation, if a user
is able to submit a coupon multiple times, until the priceldd item is zero. Another
example might be a nancial services web application whictidentally sends con -
dential nancial reports to unauthorized users.

An injection vulnerability can affect any web applicati@md the x of the vulner-

ability will be the same, regardless of the underlying wepl@ation. In contrast, logic

14

Chapter 1. Introduction

aws are speci ¢ and unique to the web application. Identizahavior that appears in
two web applications may be a logic aw in one but a securitinewability in the other.
Consider the behavior of an unauthenticated user altenmgantent of a web page. In
most applications, this would represent a vulnerabiliopvaver it is the core mechanic
and de ning feature of a wiki, such as Wikipedia. The distirghing feature of logic
aw vulnerabilities is that the web application code is ftioaing correctly—that is, an
attacker is not able to alter how the code executes or exeodteof her choosing, how-
ever the behavior that the code executes violates the dgmrdsecurity model of the
application. Therefore, these vulnerabilities are intdygddif cult to detect in an au-
tomated fashion, as the automated tool must reverse emgheedeveloper's intended
security model.

In Chapter 5, we will describe a novel class of logic aw vulakilities called

Execution After Redirect.

1.3 Securing Web Applications

Given their rise in popularity, ensuring that web applioati are secure is critical.
Security aws in a web application can allow an attacker wgedented access to secret

and sensitive data.

15

Chapter 1. Introduction

There are numerous approaches to secure web applicatigpsnding on where
the defense is put into place. One approach is to detectkatts they happen and
block the attack traf c. Another approach is to construa tireb application in a way
such that it is not vulnerable to entire classes of secutitgerabilities. Finally, and the
approach taken in the majority of this dissertation, is m#ted tools to automatically

nd vulnerabilities in web applications.

1.3.1 Anomaly Detection

One way to secure web applications is to have tools and appesahat look for
attacks against web applications in the inbound web traftd]. There are many ap-
proaches in this area, but most of them involve rst creatngodel of the normal
behavior of the web application. Then, after this model &ated, a monitoring/detec-
tion phase starts which analyzes inbound web applicatadit tiooking for anomalous
web requests which signify an attack. Depending on the ahyotegection system, the
request can be blocked or prevented at that time.

Anomaly detection systems are good for preventing unknoyptods against the
web application. However, the effectiveness of the anordatgction depends on the
creation of the web application model and the presence ehsite attack-free traf c.

In practice, it is dif cult to automatically create extemsiattack-free traf c.

16

Chapter 1. Introduction

Modern web application can use anomaly detection system®oiuction environ-

ments as a defense-in-depth approach.

1.3.2 Vulnerability Analysis Tools

Vulnerability analysis is the art of nding vulnerabilitsen software. The idea is to
nd vulnerabilities either before an application is depdalyor before an attacker is able
to nd the vulnerability.

Manual vulnerability analysis is when a team of humans miyaaalyze an ap-
plication for vulnerabilities. These manual vulneralilgnalyses, frequently called
pentestingemploy a team of experts to nd vulnerabilities in a softwagstem. The
downside is that an expert's time is costly, and therefous, @ the cost, a company
will very infrequently do an external pentest of its web apgions.

Vulnerability analysis tools are automated approachestbvulnerabilities in soft-
ware. The goal of this type of software is to nd all possibldnerabilities in an ap-
plication. The core idea is to develop software that can gswate a human security
expert's knowledge.

Because vulnerability analysis tools are automated, theybe used against a va-
riety of applications. Furthermore, they are signi canlyss expensive than hiring
a team of human experts, so they can be used much more frggtleoughout the

software development process.

17

Chapter 1. Introduction

Vulnerability analysis tools can be categorized based oatwiformation of the
web application they use. In the following sections we wisdribe the difference

between white-box, black-box, and grey-box vulnerabdityalysis tools.

White-Box

A white-box vulnerability analysis tool looks at the sournmale of the web appli-
cation to nd vulnerabilities. By analyzing the source coalethe web application,
a white-box tool can seall potential program paths throughout the application. This
enables a white-box tool to potentially nd vulnerabilgialong all program paths. Typ-
ically approaches leverage ideas and techniques from tigrgm analysis and static
analysis communities to nd vulnerabilities.

The biggest strength of white-box tools is that they are &bkee all possible pro-
gram paths through the application. However, as precidelytifying all vulnerabilities
in an application via static analysis is equivalent to thimgproblem, trade-offs must
be made in order to create useful tools. The trade-off thatten made in white-box
tools is one of being sound rather than complete. What thensés that a white-box
tool will report vulnerabilities that are not actual vulaéilities. This is usually be-
cause the static analysis will over-approximate the progpaths that the application

can take. Thus, there will be vulnerabilities reported t@tnot occur in practice.

18

Chapter 1. Introduction

The downside of white-box tools is that they are tied to thecgp language or
framework. A white-box vulnerability analysis tool writtdor PHP will not work for
Ruby on Rails without signi cant engineering work. Theseltoare tightly coupled to

not only language features, but also framework features.

Black-Box

In contrast to white-box tools, black-box vulnerabilityadysis tools assume no
knowledge of the source-code of the web application. Inktéaising the source code,
black-box tools interact with the web application beinge¢dgust as a user with a web
browser would. Speci cally, this means that the black-boals issue HTTP requests
to the web application and receive HTTP responses contaiHifML. These HTML
pages tell the black-box tool how to generate new HTTP ragquegshe application.

Black-box tools rst will crawl the web application lookirfgr all possiblanjection
vectorsinto the web application. An injection vector is any way thatattacker can
feed input into the web application. In practice, web aggil@n injection vectors are:
URL parameters, HTML form parameters, HTTP cookies, HTT&dees, URL path,
and so on.

Once the black-box tool has enumerated all possible imeatectors in the appli-
cation, the next step is to give the web application inputolii$ intended to trigger or

expose a vulnerability in the web application. This prodedgpically calledfuzzing.

19

Chapter 1. Introduction

The speci cs of choosing which injection vectors to fuzz aviten are speci c to each
black-box tool.

Finally, the black-box tool will analyze the HTML and HTTPsponse to the
fuzzing attempts in order to tell if the attempt was sucadssf it was, the black-box
tool will report it as a vulnerability.

There are two major bene ts of black-box tools as opposed hitesbox tools.
The rst is that black-box tools are general and can nd vuhiglities in any web
application, regardless of what language the server-side s written in. In this way,
black-box tools emulate an external hacker who has no atc#iss source code of the
application. Therefore, black-box tools are applicabla tauch larger number of web
applications.

The second major bene t is that black-box tools have sigantty lower false posi-
tive$® than white-box tools. This is because the fuzzing attemipizdly tries to trigger
the vulnerability, and, for most web vulnerabilities, a sessful exploitation will be
evident in the resulting HTML page. Ultimately, lower falgesitives causes the de-
velopers who run these tools against their own web appdicatio trust the output of a
black-box tool over a white-box tool.

The drawback of a black-box tool is that it is not guaranteecd all vulnerabil-

ities in your web application. This limitation is becauselack-box tool can only nd

6A false positives a vulnerability that the tool reports which is not actyalvulnerability.

20

Chapter 1. Introduction

vulnerabilities along program paths that it executes, eagml white-box tool can see

all program paths through an application.

Grey-Box

As the name suggests, grey-box tools are a combination désaoix techniques
and black-box techniques. The main idea is to use white-tagicanalysis techniques
to generate possible vulnerabilities. Then, there is a goation step where the tool
will actually try to exploit the vulnerability. Only if thistep is successful will the tool
report the vulnerability.

Grey-box tools inherit the bene ts of white-box tools: Thieilay to nd vulner-
abilities in all program paths along with the low false pivsitrate associated with
black-box tools (as the vulnerabilities are veri ed by tHadk-box techniques). How-
ever, grey-box tools also inherit the drawbacks of whit&-twmwls: Applicability to a
single web application language or framework. Therefdresé types of tools are not

as popular as white-box and black-box tools.

1.4 Securing the Web

Given the empowering nature of web applications, it is clbeat securing web applica-

tions is important. Speci cally, we must focus on the neefithe users: making sure

21

Chapter 1. Introduction

that their data is safe, and that they are safe while browtsiagveb. To accomplish
this, | believe that we must make the necessary strides ébecaeitomated tools that are
able to automatically nd security vulnerabilities. Thesels can be used by develop-
ers with no security expertise, thus putting developers lavel playing eld with the

attackers.

In this dissertation, | make the following contributionsgecuring web applications

from attack:

| methodically analyze existing black-box web applicatiarinerability scan-
ners. We develop a known-vulnerable web application, thaluate several real-
world black-box web application vulnerability scannergentify their strengths

and weaknesses.

Then, using the previously developed work as a guide, | aisobee the biggest
problem restricting modern black-box web application enéibility scanners:
They do not understand that they are analyzing a amgflicationwith state. |
develop an approach to automatically reverse-enginestdte machine of a web
application solely through black-box interactions. Irmanating this knowledge
into a black-box web application vulnerability scannerldaa the scanner to test

signi cantly more of the web application.

22

Chapter 1. Introduction

| identify and study a novel class of web application vulidiaes, called Exe-
cution After Redirect, or EARs. These logic aw vulnerabds can affect web
applications written in a number of languages or frameworks addition to
studying this class of vulnerabilities, we developed a eAhibx static analysis
tool to automatically identify EARs in Ruby on Rails web apptions. By ap-
plying this tool to a large corpus of real-world open-souneb application, we

found many previously unknown vulnerabilities.

Finally, |1 propose a new approach to fundamentally solves&i®ite Scripting
vulnerabilities. By using the fundamental security prpiles of Code and Data
separation, we can view XSS vulnerabilities as a problemaafeCand Data sep-
aration. New applications can be designed with Code and Bgaration in
mind, however it is dif cult to separate Code and Data matyualo prevent
XSS vulnerabilities in existing web applications, | crebéetool to automatically
perform Code and Data separation for legacy web applicatiéditer applying
this tool, the web applications are fundamentally secusenfserver-side XSS

vulnerabilities.

23

Chapter 2
Related Work

Automated web application vulnerability analysis tools an area of research that
has received considerable study. In this chapter, we vatiulis works related to differ-
ent areas of web application vulnerability scanners: haehlbox web vulnerability
scanners are evaluated, the history of black-box and vidatetools, and nally the

various proposed defenses for Cross-Site Scripting vabikties.

2.1 Evaluating Black-Box Web Vulnerability Scanners

Our work on evaluating black-box vulnerability scanner€imapter 3 is related to
two main areas of research: the design of web applicatianasgessing vulnerability
analysis tools and the evaluation of web scanners.

Designing test web applications.Vulnerable test applications are required to assess

web vulnerability scanners. Unfortunately, no standased seiite is currently avail-

24

Chapter 2. Related Work

able or accepted by the industry and research communitynelBank [53] and Web-
Goat [105] are two well-known, publicly-available, vulabte web applications, but
their design is focused more on teaching web applicationrggaather than testing
automated scanners.

SiteGenerator [104] is a tool to generate sites with certhiaracteristics (e.qg.,
classes of vulnerabilities) according to its input con gtion. While SiteGenerator is
useful to automatically produce different vulnerablesitg@e found it easier to manu-
ally introduce in WackoPicko the vulnerabilities with theacacteristics that we wished
to test.

Evaluating web vulnerability scanners. There exists a growing body of literature
on the evaluation of web vulnerability scanners. For exanfluto compared three
scanners against three different applications and useslamarage, among other met-
rics, as a measure of the effectiveness of each scanner. [184 follow-up study,

Suto [135] assessed seven scanners and compared thetiatetapabilities and the

time required to run them. Wiegenstein et al. ran ve unnarsea@inners against a
custom benchmark [144]. Unfortunately, the authors do msxtuss in detail the rea-
sons for detections or spidering failures. In their survéyeb security assessment
tools, Curphey and Araujo reported that black-box scanmer®rm poorly [39]. Peine

examined in depth the functionality and user interfaceseuoén scanners (three com-

mercial) that were run against WebGoat and one real-wonbdigiion [111]. Kals et

25

Chapter 2. Related Work

al. developed a new web vulnerability scanner and tested &pproximately 25,000
live web pages [82]. Because no ground truth is availabléiese sites, the authors did
not discuss false negative rate or failures of their toolataSec released an evaluation
of three scanners against 13 real-world applicationsgetiwreb applications provided
by the scanner vendors, and a series of JavaScript testé/Ji]e this experiment as-
sessed a large number of real-world applications, only adobmumber of scanners are
tested and no explanation is given for the results. In aslilitVieira et al. tested four
web vulnerability scanners on 300 web services [138]. ThHey geport high rates of

false positives and false negatives.

2.2 Black-Box Vulnerability Scanners

Automatic or semi-automatic web application vulnerapiitanning has been a hot
topic in research for many years because of its relevancé&saodmplexity. In Chap-
ter 4 we will discuss the creation of a new black-box vulnéitgtscanner technique.
Here, we review the relevant literature.

Huang et al. developed a tool (WAVES) for assessing web egipdin security with
which we share many points [71]. Similarly to our work, theya a scanner for nding
the entry points in the web application by mimicking the hebraof a web browser.

They employ a learning mechanism to sensibly Il web formdsland allow deep

26

Chapter 2. Related Work

crawling of pages behind forms. Attempts to discover vidbéities are carried out

by submitting the same form multiple times with valid, indaland faulty inputs, and

comparing the result pages. Differently from WAVES, we asing the knowledge

gathered by the understanding of the web application'® stahelp the fuzzer detect
the effect of a given input. Moreover, black-box vulnerdpiscanner aims not only at
nding relevant entry-points, but rather at building a cdetp state-aware navigational
map of the web application.

A number of tools have been developed to try to automatichdgover vulnerabil-
ities in web applications, produced as academic prototjied8,61,72,81,82,89], as
open-source projects [26, 33,117], or as commercial prtsdad¢70,73,113].

Multiple projects [14, 135, 138], as well as Chapter 3 tadklee task of evaluat-
ing the effectiveness of popular black-box scanners (inesoases also callgabint-
and-shootscanners). The common theme in their results is a relevantegiancy in
vulnerabilities found across scanners, along with low ey Authors of these eval-
uations acknowledge the dif culties and challenges of teki{59, 138]. In particular,
we highlighted how more deep crawling and reverse engingarapabilities of web
applications are needed in black-box scanners, and we alsdaped théVackoPicko
web application which contains known vulnerabilities désed in Chapter 3. Simi-

larly, Bau et al. investigated the presence of room for neseen this area, and found

27

Chapter 2. Related Work

improvementis needed, in particular for detecting seaomir XSS and SQL injection
attacks [14].

Reverse engineering of web applications has not been welgllored in the liter-
ature, to our knowledge. Some approaches [42] perforncsatlysis on the code to
create UML diagrams of the application.

Static analysis, in fact, is the technique mostly employe@titomatic vulnerability
detection, often combined with dynamic analysis.

Halfond et al. developed a traditional black-box vulneligbscanner, butimproved
its results by leveraging a static analysis technique tteb&tentify input vectors [61].

Pixy [81] employed static analysis with taint propagation inesrtb detect SQL
injection, XSS, and shell command injection, whdaner[11] used sound static anal-
ysis to detect failures in sanitization routines. Saneo td&kes advantage of a second
phase of dynamic analysis to reduce false positives. SilyiMebSSAR]72] also em-
ployed static analysis for detecting injection vulneriiei$, but, in addition, it proposed
a technique for runtime instrumentation of the web appliceathrough the insertion of
proper sanitization routines.

Felmetsger et al. investigated an approach for detectugig law vulnerabilities by
combining execution traces and symbolic model checkingy [@8nilar approaches are
also used for generic bug nding (in fact, vulnerabilitie® &onsidered to be a subset

of the general bug category). Csallner et al. employ dynanaies for bug nding

28

Chapter 2. Related Work

and for dynamic veri cation of the alerts generated by tregistanalysis phase [37].
Artzi et al., on the other hand, use symbolic execution andehohecking for nding
general bugs in web applications [6].

On a completely separate track, efforts to improve web apptin security push
developers toward writing secure code in the rst place. Usigc experts are tying to
achieve this goal by either educating the developers [12%esigning frameworks
which either prohibit the use of bad programming practicesrdorce some security
constraints in the code. Robertson and Vigna developedagir-typed framework
which statically enforces separation between structudecantent of a web page, pre-
venting XSS and SQL injection [119]. Also Chong et al. deswjtheir language for
developers to build web applications with strong con dahty and integrity guaran-
tees, by means of compile-time and run-time checks [34].

Alternatively, consequences of vulnerabilities in weblaggpions can be mitigated
by attempting to prevent the attacks before they reach patignvulnerable code, such
as, for example, in the already mention&8bSSAR[72] work. A different approach
for blocking attacks is followed by Scott and Sharp, who d®ved a language for
specifying a security policy for the web application; a getg will then enforce these
policies [126].

Another interesting research track deals with the probléimoa to explore web

pages behind forms, also called thielden welJ115]. McAllister et al. monitor user

29

Chapter 2. Related Work

interactions with a web application to collect sensibleueal for HTML form sub-
mission and generate test cases that can be replayed tasecrede coverage [95].
Although not targeted to security goals, the work of Raghaaad Garcia-Molina is
relevant for their contribution in classi cation of diffent types of dynamic content
and for their novel approach for automatically lling forniy deducing the domain
of form elds [115]. Raghavan and Garcia-Molina carried dutther research in this
direction, by reconstructing complex and hierarchicalrgueterfaces exposed by web
applications.

Moreover, Amal tano et al. started tackling the problem e¥erse engineering the
state machine of client-side AJAX code, which will help indimg the web applica-
tion server-side entry points and in better understatimgpgex and hierarchical query
interfaces [4].

Finally, there is the work by Berg et al. in reversing statehiaes into éSymbolic
Mealy Maching[SMM) model [15]. Their approach for reversing machinesnzdrbe
directly applied to the case of web applications becauséfirifeasibility of fully
exploring all pages for all the states, even for a small subkéhe possible states.
Nevertheless, the model they propose for a SMM is a goodraggrbint to model the

web application’s state.

30

Chapter 2. Related Work

2.3 Automated Discovery of Logic Flaws

In Chapter 5, we discuss and analyze a novel class of webcafiph vulnerabili-
ties, called Execution After Redirect. In this section, weiew the relevant literature
applicable to Execution After Redirect vulnerabilitieglamore generally, logic aws.

Isolated instances of Execution After Redirect (EAR) vudilities have been pre-
viously identi ed. Hofstetter wrote a blog post alertinggpde to not forget to exit after
a redirect when using the PHP framework CakePHP [66]. Tlhhsudision resulted in
a bug being led with the CakePHP team [27]. This bug was nesbby updating the
CakePHP documentation to indicate the redirect methodatiémd execution [28].

Felmetsger et al. presented a white-box static analysisdod2EE servlets to auto-
matically detect logic aws in web applications. The toolalaft, found Execution Af-
ter Redirect vulnerabilities in a web application callea k&l Internship Management
System (GIMS) [48]. However, neither Felmetsger nor Hafstadenti ed EARSs as a
systemic aw among web applications.

Wang et al. manually discovered logic aws in the interantiof Cashier-as-a-
Service (CaaS) APIs and the web applications that use thdf].[IThis work is in-
teresting because there is a three-way interaction bettheeunsers, the CaaS, and the
web application. In Chapter 5, we consider one speci c typegic aw across many

applications.

31

Chapter 2. Related Work

Our white-box EAR detection tool uses the Ruby Intermediaieguage (RIL)
developed by Furr et al. [54]. RIL was used by An et al. to idtree static typing to
Ruby on Rails [68]. They use the resulting system, DRailglewen Rails applications
to statically discover type errors. DRails parses Raildiegions by compiling them to
equivalent Ruby code, making implicit Rails conventionglext. This differs from our
tool, which operates directly on the Rails application'sittol ow graph. Moreover,
we are looking for a speci c logic aw, while DRails is lookafor type errors.

Chaudhuri and Foster built a symbolic analysis engine onofopRails, called
Rubyx [31]. They are able to analyze the security propedfeRails applications us-
ing symbolic execution. Rubyx detected XSS, CSRF, sessampulation, and unau-
thorized access in the seven applications tested. Due teythéolic execution and
verifying of path conditions, false positives are redudddwever, Rubyx requires the
developer to manually specify an analysis script that de im@ariants on used objects,
as well as the security requirements of the applications.t@nl, on the other hand, op-
erates on raw, unmodi ed Rails applications, and does rpiire any developer input.
This is due to the different focus; we are focusing on oneispgge of aw, while
Rubyx is broader and can verify different types of securipations.

The static analysis EAR detection tool that we develop arsdrilee in Chapter 5 is
also related to numerous white-box tools that have prelydaesen published. Huang

et al. were one of the rst to propose a static analysis tooladcserver-side script-

32

Chapter 2. Related Work

ing language, speci cally PHP. They implemented taint @ggtion to detect XSS,
SQL injection, and general injection [72]. Livshits and Lanoposed a static analysis
technique for Java web applications that used points-ttysisafor improved preci-
sion [92]. Their tool detected 29 instances of SQL injecti®¥®S, HTTP response
splitting, and command injection in nine open-source agibns. Jovanovic et al. de-
veloped Pixy, an open-source static analysis tool to dscE$S attacks by performing
ow-sensitive, inter-procedural, and context-sensitilaga ow analysis on PHP web
applications [80]. They later improved Pixy, adding preciias analysis, to discover
hundreds of XSS vulnerabilities in three PHP applicatidvadf of which were false
positives [79]. Balzarotti et al. used static and dynamialysis to develop MiMoSa,
a tool that performs inter-module data ow analysis to dismoattacks that leverage
several modules, such as stored XSS. They found 27 data olatons in ve PHP
web applications [12].

All of these static analysis tools differ from our white-bmol because we are not
looking for injection vulnerabilities, but rather for ur@ected execution that a devel-

oper did not intend.

33

Chapter 2. Related Work

2.4 Cross-Site Scripting Defense

A broad variety of approaches have been proposed to addiftm®mt types of
XSS, though no standard taxonomy exists to classify thdaekst and defenses. In
general, XSS defenses employ schemes for input sanitizatioestrictions on script
generation and execution. Differences among various tquke involve client- or
server-side implementation and static or dynamic oparaiide group and review XSS

defenses in this context.

2.4.1 Server-Side Methods

There has been much previous research in server-side X88sasf[11, 18, 58, 60,
80,93,101,112,123,125,133]. Server-based techniqoetoaidynamically generated
pages free of XSS vulnerabilities. This may involve validatr injection of appropri-
ate sanitizers for user input, analysis of scripts to nd X&@herabilities, or automatic
generation of XSS-free scripts.

Server-side sanitizer defenses either check existindization for correctness or
generate input encodings automatically to match usagexoriior example, Saner [11]
uses static analysis to track unsafe inputs from entry tgeistollowed by dynamic
analysis to test input cases for proper sanitization albegéd paths. &RIPTGARD [125]

is a complementary approach that assumes a set of “coraautizers and inserts them

34

Chapter 2. Related Work

to match the browser's parsing contex&B[67] focuses on creating sanitization func-
tions that are automatically analyzable for precisenesiscamnrectness. Sanitization
remains the main industry-standard defense against XS&#atdd vulnerabilities.

A number of server-side defenses restrict scripts incluedrver-generated pages.
For example, XSS-GUARD [18] determines valid scripts dyitathy and disallows
unexpected scripts. The authors report performance ozdshaf up to 46% because of
the dynamic evaluation of HTML and JavaScript. Templatipgraaches [58,119,123]
generate correct-by-construction scripts that incorgocarrect sanitization based on
context. In addition, schemes based on code isolationd3] 8yitigate XSS by limiting
DOM access for particular scripts, depending on their odnte

Certain XSS defenses [78,80,92,94,101,112,124, 136 uUst:flata- ow analysis
or taint tracking to identify unsanitized user input incdadin a generated web page.
These approaches typically rely on sanitization, encqding other means of separat-
ing unsafe inputs from the script code. Some schemes pra\&ftugs dynamically,
while others focus on static detection and elimination.

Other approaches [60, 93, 100] combine server-side priongegsth various client-
side components, such as con nement of untrusted inputsrarllup randomization.
Such schemes may parse documents on the server and preyenbedncations of
the resulting parse trees on the client. In addition, raridation of XHTML tags can

render foreign script code meaningless, defeating manyiKj@8&tion attacks.

35

Chapter 2. Related Work

2.4.2 Client-Side Methods

Client-side XSS defenses [77,83,97,131,139,142] mii¥&8S while receiving or
rendering untrusted web content. Some of these schemesrblpwser modi cations
or plug-ins, often reducing their practical applicabilitpthers use custom JavaScript
libraries or additional client-side monitoring softwar€SP [131] is a browser-based
approach that allows only developer speci ed JavaScrigixecute, and its incorpora-
tion into WWW standards should facilitate wide acceptanusupport by all popular
browsers.

Some client-side XSS defenses focus on detecting and pgnegéeakage of sensi-
tive data. For example, Noxes [83] operates as a persopalall browser plug-in that
extracts all static links from incoming web pages, prongtime user about disclosure
of information via dynamically generated links. Vogt et[dl39] also aim to address
this problem, but use taint-tracking analysis within a lsewto check for sensitive data
released via XSS attacks.

Client-side HTML security policies mitigate XSS via conteastrictions, such as
disallowing unsafe features or executing only “known goscfipts. Using a browser's
HTML parser, BEEP [77] constructs whitelists of scripts, ahuike XSS-GUARD's
server-side approach [18]. BEEP assumes that the web applichas no dynamic
scripts whose hashes cannot be pre-computed, limitingréstipality with modern

web applications; moreover, it has been shown that evereilidigd scripts may be

36

Chapter 2. Related Work

vulnerable to attacks [8]. Another custom content secydlicy is BLUEPRINT'S
page descriptions, which are interpreted and renderetlydafea custom JavaScript
library [93]. Script policies enforced at runtime [62, 97galso useful for mitigating
XSS exploits.

In general, standardized HTML security policies [131, 14%Er promise as a
means of escaping the recent proliferation of complex,noftd hoc XSS defenses.
CSP simpli es the problem by enforcing fairly strong restions, such as disabling
eval() and other dangerous APIs, prohibiting inline JavaScript] allowing only
local script resources to be loaded. While new web apptioatcan be designed with

CSP in mind, legacy code may require signi cant rewriting.

37

Chapter 3

An Analysis of Black-Box Web
Application Vulnerability Scanners

First, we will turn our attention to the problem of black-berb application vulner-
abilities scanners—that is, automated tools that attemptd security vulnerabilities
in web applications. The goal of this chapter is study theenirstate of black-box web

application vulnerability scanners.

Web application vulnerabilities, such as cross-site siagpand SQL injection, are
one of the most pressing security problems on the Intermstytoln fact, web appli-
cation vulnerabilities are widespread, accounting fonttagority of the vulnerabilities
reported in the Common Vulnerabilities and Exposures da@ap40]; they are frequent
targets of automated attacks [128]; and, if exploited sssftdly, they enable serious
attacks, such as data breaches [103] and drive-by-dowalibacks [114]. In this sce-

nario, security testing of web applications is clearly etis¢

38

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

A common approach to the security testing of web applicaticonsists of using
black-box web vulnerability scannersThese are tools that crawl a web application
to enumerate all the reachable pages and the associatedviegiors (e.g., HTML
form elds and HTTP GET parameters), generate specialiyfted input values that
are submitted to the application, and observe the apmicatbehavior (e.g., its HTTP
responses) to determine if a vulnerability has been trigidyer

Web application scanners have gained popularity, due o ittdependence from
the speci c web application's technology, ease of use, aigth kevel of automation.
(In fact, web application scanners are often marketed amtyamd-click” pentesting
tools.) In the past few years, they have also become a reneiein several standards,
most notably, in the Payment Card Industry Data Securitycgted [110].

Nevertheless, web application scanners have limitatiBrimarily, as most testing
tools, they provide no guarantee of soundness. Indeedgita#t few years, several
reports have shown that state-of-the-art web applicatansers fail to detect a signif-
icant number of vulnerabilities in test applications [51 1134, 135, 144]. These reports
are valuable, as they warn against the naive use of web afiplcscanners (and the
false sense of security that derives from it), enable madi@mmed buying decisions,
and prompt to rethink security compliance standards.

However, knowing that web application scanners miss valniéties (or that, con-

versely, they may raise false alerts) is only part of the foes Understandingvhy

39

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

these tools have poor detection performance is criticahto msights into how current
tools work and to identify open problems that require furtlesearch. More concretely,
we seek to determine the root causes of the errors that weéicatm scanners make,
by considering all the phases of their testing cycle, froawting, to input selection,

to response analysis. For example, some of the questions¢haant to answer are:
Do web application scanners correctly handle JavaScrigg2&an they detect vulner-
abilities that are “deep” in the application (e.g., that e@achable only after correctly
submitting complex forms)? Can they precisely keep tracthefstate of the applica-
tion?

To do this, we built a realistic web application, called Walelcko, and used it to
evaluate eleven web application scanners on their abditgrawl complex web appli-
cations and to identify the associated vulnerabilities.réfarecisely, the WackoPicko
application uses features that are commonly found in mogtlelnapplications and that
make their crawling dif cult, such as complex HTML forms,texsive JavaScript and
Flash code, and dynamically-created pages. Furthermergtroduced in the applica-
tion's source code a number of vulnerabilities that arees@ntative of the bugs com-
monly found in real-world applications. The eleven web aggtion scanners that we
tested include both commercial and open-source tools. \Mei@ed each of them un-
der three different con guration settings, correspondimgncreasing levels of manual

intervention. We then analyzed the results produced byabis tn order to understand

40

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

how the tools work, how effective they are, and what makemtfal. The ultimate
goal of this effort is to identify which tasks are the most lidraging for black-box
vulnerability scanners and may require novel approachbe tackled successfully.
The main contributions of this chapter are the following:
We performed the most extensive and thorough evaluatiotackkbox web ap-
plication vulnerability scanners so far.
We identify a number of challenges that scanners need t@oner to success-
fully test modern web applications both in terms of crawlargl attack analysis
capabilities.
We describe the design of a testing web site for web applioagcanners that
composes crawling challenges with vulnerability instanc&his site has been
made available to the public and can be used by other reszarichthe eld.
We analyze in detailvhythe web application vulnerability scanners succeed or

fail and we identify areas that need further research.

3.1 Background

Before discussing the design of our tests, it is useful te puliscuss the vulnera-
bilities that web application scanners try to identify aaghtesent an abstract model of

a typical scanner.

41

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

3.1.1 Web Application Vulnerabilities

Web applications contain a mix of traditional aws (e.g.effective authentica-
tion and authorization mechanisms) and web-speci ¢ vudbéities (e.g., using user-
provided inputs in SQL queries without proper sanitizatioflere, we will brie y
describe some of the most common vulnerabilities in webiegipbns (for further de-
tails, the interested reader can refer to the OWASP Top 1) Wisich tracks the most
critical vulnerabilities in web applications [107]):

Cross-Site Scripting (XSS): XSS vulnerabilities allow an attacker to execute
malicious JavaScript code as if the application sent thdéto the user. This is
the rst most serious vulnerability of the OWASP Top 10 Liahd WackoPicko
includes ve different XSS vulnerabilities, both re ectehd stored.

SQL Injection: SQL injection vulnerabilities allow one to manipulate, atie
or execute arbitrary SQL queries. This is the second mogiusevulnerability
on the OWASP Top 10 List, and the WackoPicko web applicatmmtains both
are ected and a stored SQL injection vulnerability.

Code Injection: Code injection vulnerabilities allow an attacker to executbi-
trary commands or execute arbitrary code. This is the thmdtreerious vulnera-
bility on the OWASP Top 10 List, and WackoPicko includes bmtommand line
injection and a le inclusion vulnerability (which might selt in the execution of

code).

42

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Broken Access Controls: A web application with broken access controls fails
to properly de ne or enforce access to some of its resourd@éss is the tenth
most serious vulnerability on the OWASP Top 10 List, and Viddikko has an

instance of this kind of vulnerability.

3.1.2 Web Application Scanners

In abstract, web application scanners can be seen as ¢ogsitthree main mod-
ules: acrawler module, amattackermodule, and amnalysismodule. The crawling
component is seeded with a set of URLSs, retrieves the cayneipg pages, and follows
links and redirects to identify all the reachable pagesérgipplication. In addition, the
crawler identi es all the input points to the applicationich as the parameters of GET
requests, the input elds of HTML forms, and the controlsttahow one to upload
les.

The attacker module analyzes the URLs discovered by theleramd the corre-
sponding input points. Then, for each input and for eachemalbility type for which
the web application vulnerability scanner tests, the k#amodule generates values
that are likely to trigger a vulnerability. For example, tacker module would at-
tempt to inject JavaScript code when testing for XSS vulbiéitis, or strings that have
a special meaning in the SQL language, such as ticks and S@atops, when testing

for SQL injection vulnerabilities. Input values are usyaeéenerated using heuristics or

43

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

using prede ned values, such as those contained in one oh#my available XSS and
SQL injection cheat-sheets [121, 122].

The analysis module analyzes the pages returned by the wébatjon in response
to the attacks launched by the attacker module to detectipp@ssiinerabilities and to
provide feedback to the other modules. For example, if tige paturned in response to
input testing for SQL injection contains a database errsgage, the analysis module

may infer the existence of a SQL injection vulnerability.

3.2 The WackoPicko Web Site

A preliminary step for assessing web application scannensists of choosing a
web application to be tested. We have three requirementsucn an application:
it must have clearly de ned vulnerabilities (to assess tbanser's detection perfor-
mance), it must be easily customizable (to add crawlinglehges and experiment
with different types of vulnerabilities), and it must be regentative of the web appli-
cations in use today (in terms of functionality and of tedbga@s used).

We found that existing applications did not satisfy our liegments. Applications
that deliberately contain vulnerabilities, such as Hacardg53] and WebGoat [105],
are often designed to be educational tools rather tharstiealestbeds for scanners.

Others, such as SiteGenerator [104], are well-known, artdinescanners may be op-

44

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

timized to perform well on them. An alternative then is to aseolder version of an
open-source application that has known vulnerabilitieshis case, however, we would
not be able to control and test the crawling capabilitiehefdcanners, and there would
be no way to establish a false negative rate.

Therefore, we decided to create our own test applicatioilecc@VackoPicko. It
is important to note that WackoPicko is a realistic, fullynétional web application.
As opposed to a simple test application that contains julsterabilities, WackoPicko
tests the scanners under realistic conditions. To testdéweners' support for client-
side JavaScript code, we also used the open source Web laptdr\Extractor Teaser
(WIVET). WIVET is a synthetic benchmark that measures hovl eerawler is able
to discover and follow links in a variety of formats, such asabcript, Flash, and form

submissions.

3.2.1 Design

WackoPicko is a photo sharing and photo-purchasing sitgp&al user of Wack-
oPicko is able to upload photos, browse other user's phetwament on photos, and
purchase the rights to a high-quality version of a photo.

Authentication. WackoPicko provides personalized content to registeredsusDe-
spite recent efforts for a uni ed login across web sites [[L@Bost web applications

require a user to create an account in order to utilize theceey offered. Thus, Wack-

45

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

oPicko has a user registration system. Once a user hasccaaseccount, he/she can
log in to access WackoPicko's restricted features.

Upload Pictures. When a photo is uploaded to WackoPicko by a registered usesr, 0
users can comment on it, as well as purchase the right to aciglity version.
Comment On Pictures. Once a picture is uploaded into WackoPicko, all registered
users can comment on the photo by lling out a form. Once @@athe comment
is displayed, along with the picture, with all the other coemts associated with the
picture.

Purchase Pictures. A registered user on WackoPicko can purchase the hightguali
version of a picture. The purchase follows a multi-step psscin which a shopping
cartis lled with the items to be purchased, similar to thegess used in e-commerce
sites. After pictures are added to the cart, the total pritkeeocart is reviewed, discount
coupons may be applied, and the order is placed. Once thegscare purchased, the
user is provided with links to the high-quality version oétpictures.

Search. To enable users to easily search for various pictures, Weicko provides a
search toolbar at the top of every page. The search funditipudilizes the tag eld
that was lled out when the picture was uploaded. After a gusrissued, the user is

presented with a list of all the pictures that have tags tretmthe query.

46

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Guestbook. A guestbook page provides a way to receive feedback fromsatbvs to
the WackoPicko web site. The form used to submit feedbackagmna “name” eld
and a “comment” eld.

Admin Area. WackoPicko has a special area for administrators only, whas a dif-
ferent login mechanism than regular users. Administratansperform special actions,

such as deleting user accounts, or changing the tags oftagict

3.2.2 \ulnerabilities

The WackoPicko web site contains sixteen vulnerabilitied &re representative of
vulnerabilities found in the wild, as reported by the OWAS# TLO Project [107]. In

the following we provide a brief description of each vulrigliay.

Publicly Accessible Vulnerabilities

A number of vulnerabilities in WackoPicko can be exploiteithaut rst logging

into the web site.

Re ected XSS: There is a XSS vulnerability on the search page, which isssioke
without having to log into the application. In fact, the guearameter is not sanitized
before being echoed to the user. The presence of the vulligralan be tested by

setting the query parameter ¢acript>alert('xss')</script> . When this

a7

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

string is re ected to the user, it will cause the browser tepdty an alert message. (Of
course, an attacker would leverage the vulnerability tégper some malicious activity
rather than alerting the victim.)

Stored XSS:There is a stored XSS vulnerability in the guestbook page.cbmment
eld is not properly escaped, and therefore, an attackeresgioit this vulnerability by
creating a comment containing JavaScript code. Whenevseravisits the guestbook
page, the attack will be triggered and the (possibly malis)davaScript code executed.
Session ID:The session information associated with administrativeoants is han-
dled differently than the information associated with teessons of normal users. The
functionality associated with normal users uses PHP'siczedsndling capabilities,
which is assumed to be free of any session-related vulrigieb{e.g., session xation,
easily-guessable session IDs). However the admin seciemaicustom session cookie
to keep track of sessions. The value used in the cookie is aaraom value that is
incremented when a new session is created. Therefore,aakatican easily guess the
session id and access the application with administraiNeg.

Weak password: The administrative account page has an easily-guessatipase
and password combination: admin/admin.

Re ected SQL Injection: WackoPicko contains a re ected SQL injection vulnerabil-

ity in theusername eld of the login form. By introducing a tick into thesername

48

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

eld it is possible to perform arbitrary queries in the deaab and obtain, for example,
the usernames and passwords of all the users in the system.

Command Line Injection: WackoPicko provides a simple service that checks to see
if a user's password can be found in the dictionary. Password parameter of
the form used to request the check is used without saniizati the shell command:
grep “<password>$ /etc/dictionaries-common/words . This can be
exploited by providing as the password value a dollar sigrclpse grep's regular ex-
pression), followed by a semicolon (to terminate the grapmand), followed by extra
commands.

File Inclusion: The admin interface is accessed through a main page, ¢atle®.php
The index page acts as a portal; any value that is passedmgigsparameter will be
concatenated with the string “.php”, and then the resul@R script will be run. For
instance, the URL for the admin login pagéasimin/index.php?page=login

On the server sidandex.phpwill executelogin.phpwhich displays the form. This
design is inherently awed, because it introduces a le urstbn vulnerability. An
attacker can exploit this vulnerability and execute reniit# code by supplying, for
example,http://hacker/blah.php%00 as thepage parameter tandex.php
The %00at the end of the string causes PHP to ignore the “.php” thapended to
the page parameter. Thuslex.phpwill download and execute the codelsdtp://

hacker/blah.php

49

http://hacker/blah.php
http://hacker/blah.php

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Unauthorized File Exposure: In addition to executing remote code, the le inclusion
vulnerability can also be exploited to expose local less$lag/etc/passwd%00

as the “page” GET parameteritadex.phpof the admin section will cause the contents
of the/etc/passwd le to be disclosed.

Re ected XSS Behind JavaScript: On WackoPicko's home page there is a form that
checks if a le is in the proper format for WackoPicko to prese This form has two
parameters, a le parameter and a nhame parameter. Upon assfigtupload, the
name is echoed back to the user unsanitized, and therefiigseepresents a re ected
vulnerability. However, the form is dynamically generatesing JavaScript, and the
target of the form is dynamically created by concatenatimggs. This prevents a
crawler from using simple pattern matching to discover tiRtWised by the form.
Parameter Manipulation: The WackoPicko home page provides a link to a sample
pro le page. The link uses the “userid” GET parameter to vie sample user (who
has id of 1). An attacker can manipulate this variable to ey pro le page without

having a valid user account.

Vulnerabilities Requiring Authentication

A second class of vulnerabilities in WackoPicko can be exgdioonly after logging

into the web site.

50

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Stored SQL Injection: When users create an account, they are asked to supply their
rst name. This supplied value is then used unsanitized caggephat shows other users
who have a similar rst name. An attacker can exploit thisnarhbility by creating a
user with the name ' ; DROP users;#” then visiting the simiaers page.

Directory Traversal: When uploading a picture, WackoPicko copies the le upl@hde
by the user to a subdirectory of thipload directory. The name of the subdirectory
is the user-supplied tag of the uploaded picture. A malgioser can manipulate the
tag parameter to perform a directory traversal attack. Moeeisely, by pre-pending
“Ld " to the tag parameter the attacker can reference les oatid upload di-
rectory and overwrite them.

Multi-Step Stored XSS: Similar to the stored XSS attack that exists on the guestbook
comments on pictures are susceptible to a stored XSS atfagkever, this vulnerabil-

ity is more dif cult to exploit because the user must be loggeand must con rm the
preview of the comment before the attack is actually trigder

Forceful Browsing: One of the central ideas behind WackoPicko is the abilitysafrs

to purchase the rights to high-quality versions of pictutdewever, the access to the
links to the high-quality version of the picture is not chedk and an attacker who
acquires the URL of a high-quality picture can access it @uticreating an account,

thus bypassing the authentication logic.

51

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Logic Flaw: The coupon system suffers from a logic aw, as a coupon camppéex
multiple times to the same order reducing the nal price obatler to zero.

Re ected XSS Behind Flash:On the user's home page there is a Flash form that asks
the user for his/her favorite color. The resulting page ike&rable to a re ected XSS

attack, where the “value” parameter is echoed back to thewitfeout being sanitized.

3.2.3 Crawling Challenges

Crawling is arguably the most important part of a web applicavulnerability
scanner; if the scanner's attack engine is poomight miss a vulnerability, but if its
crawling engine is poor and cannot reach the vulnerabiliin it will surelymiss the
vulnerability. Because of the critical nature of crawlimge have included several types
of crawling challenges in WackoPicko, some of which hideneudbilities.

HTML Parsing. Malformed HTML makes it dif cult for web application scanreeto
crawl web sites. For instance, a crawler must be able to atvigTML frames and be
able to upload a le. Even though these tasks are straighiefad for a human user with
a regular browser, they represent a challenge for crawlers.

Multi-Step Process.Even though most web sites are built on top of the statele§FHT
protocol, a variety of techniques are utilized to introdgtate into web applications.

In order to properly analyze a web site, web application grability scanners must be

52

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

able to understand the state-based transactions that lede gn WackoPicko, there
are several state-based interactions.

In nite Web Site. It is often the case that some dynamically-generated comigin
create a very large (possibly in nite) crawling space. Frample, WackoPicko has
the ability to display a daily calendar. Each page of therudde displays the agenda
for a given day and links to the page for the following day. Awler that naively
followed the links in the WackoPicko's calendar would endnying to visit an in nite
sequence of pages, all generated dynamically by the samear@nt.

Authentication. One feature that is common to most web sites is an authepticat
mechanism. Because this is so prevalent, scanners mustrfyrbpndle authentication,
possibly by creating accounts, logging in with valid cretikds, and recognizing actions
that log the crawler out. WackoPicko includes a registraiad login system to test
the scanner's crawlers ability to handle the authentiogpimcess correctly.

Client-side Code.Being able to parse and understand client-side techn@pgesents
a major challenge for web application vulnerability scasneWackoPicko includes
vulnerabilities behind a JavaScript-created form, as a&behind a Flash application.
Link Extraction. We also tested the scanners on WIVET, an open-source bernchma
for web link extractors [106]. WIVET contains 54 tests andigss a nal score to a
crawler based on the percent of tests that it passes. Tlsg¢gslire scanners to analyze

simple links, multi-page forms, links in comments and Javgdd actions on a variety

53

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Name Version Used License Type Price
Acunetix 6.1 Build 20090318 Commercial ~ Standalone $4.96350
AppScan 7.8.0.0 iFix001 Build: 570 Security Commercial ~ Standalone $17,550-$32,500
Rules Version 647
Burp 1.2 Commercial Proxy £125 ($190.82)
Grendel-Scan 1.0 GPLv3 Standalone N/A
Hailstorm 5.7 Build 3926 Commercial ~ Standalone $10,000
Milescan 1.4 Commercial Proxy $495-$1,495
N-Stalker 2009 - Build 7.0.0.207 Commercial ~ Standalone 986,299
NTOSpider 3.2.067 Commercial Standalone $10,000
Paros 3.2.13 Clari ed Artistic License Proxy N/A
w3af 1.0-rc2 GPLv2 Standalone N/A
Webinspect 7.7.869.0 Commercial Standalone $6,000-$30,000

Table 3.1: Characteristics of the scanners evaluated.

of HTML elements. There are also AJAX-based tests as wellashFbased tests. In

our tests, we used WIVET version number 129.

3.3 Experimental Evaluation

We tested 11 web application scanners by running them on @ak@¥Picko web
site. The tested scanners included 8 proprietary tools aope® source programs.
Their cost ranges from free to tens of thousands of dollaesu¥éd evaluation versions
of each software, however they were fully functional. A suanyof the characteristics
of the scanners we evaluated is given in Table 3.1.

We ran the WackoPicko web application on a typical LAMP maehiwhich was
running Apache 2.2.9, PHP 5.2.6, and MySQL 5.0.67. We edahleallow _url _-
fopen andallow _url _include PHP options and disabled tmeagic _quotes
option. We ran the scanners on a machine with a Pentium 4 36k, 1024 MB of

RAM, and Microsoft Windows XP, Service Pack 2.

54

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

3.3.1 Setup

The WackoPicko server used in testing the web vulneralstignners was run in
a virtual machine, so that before each test run the servedd dmuput in an identical
initial state. This state included ten regular users, niotupes, and ve administrator
users.

Each scanner was run in three different con guration modgsrest WackoPicko,
with each con guration requiring more setup on the part & tiser. In all con gura-
tion styles, the default values for con guration paramgtgere used, and when choices
were required, sensible values were chosen. In the INITI&h guration mode, the
scanner was directed to the initial page of WackoPicko atditmscan for all vul-
nerabilities. In the CONFIG setup, the scanner was giverlid uaername/password
combination or login macro before scanning. MANUAL con @ion required the
most work on the part of the user; each scanner was put intooxypmode and then
the user browsed to each vulnerable page accessible withengntials; then, the user
logged in and visited each vulnerability that required arogAdditionally a picture
was uploaded, the rights to a high-quality version of a petvere purchased, and a
coupon was applied to the order. The scanner was then askedndhe WackoPicko

web site.

55

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Scanner Re ected XSS Stored XSS Re ected SQL Injection Camadhline Injection
Acunetix INITIAL INITIAL INITIAL

AppScan INITIAL INITIAL INITIAL

Burp INITIAL MANUAL INITIAL INITIAL
Grendel-Scan MANUAL CONFIG

Hailstorm INITIAL CONFIG CONFIG

Milescan INITIAL MANUAL CONFIG

N-Stalker INITIAL MANUAL MANUAL

NTOSpider INITIAL INITIAL INITIAL

Paros INITIAL INITIAL CONFIG

w3af INITIAL MANUAL INITIAL

Webinspect INITIAL INITIAL INITIAL

Scanner File Inclusion File Exposure XSS via JavaScript X¥iaFlash
Acunetix INITIAL INITIAL INITIAL

AppScan INITIAL INITIAL

Burp INITIAL MANUAL
Grendel-Scan

Hailstorm MANUAL
Milescan

N-Stalker INITIAL INITIAL MANUAL
NTOSpider

Paros MANUAL
w3af INITIAL MANUAL
Webinspect INITIAL INITIAL MANUAL

Table 3.2: Detection results. For each scanner, the sitngesguration that detected
a vulnerability is given. Empty cells indicate no detectiomny mode.

3.3.2 Detection Results

The results of running the scanners against the WackoPitk@ai® shown in Ta-
ble 3.2 and, graphically, in Figure 3.1. The values in thétabrrespond to the simplest
con guration that discovered the vulnerability. An empsildndicates that the given
scanner did not discover the vulnerability in any mode. Eixet only reports the vul-
nerabilities that were detected by at least one scannetthéfuanalysis of why the

scanners missed certain vulnerabilities is contained ati@ss 3.3.3 and 3.3.4.

56

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

100% -
o -
80% I False negatives
[l Detection in MANUAL mode
60% |- [Detection in CONFIG mode
0 [Detection in INITIAL mode
40% -
20% -
0%

Figure 3.1: Detection performance (true positives ancefakgyatives) of the evaluated
scanners.

Acunetix
Appscan
Burp
Grendel-Scan
Hailstorm
Milescan
N-Stalker
NTOSpider
Paros

w3af
Webinspect

The running time of the scanners is shown in Figure 3.2. The®s range from 74
seconds for the fastest tool (Burp) to 6 hours (N-Stalkene fihajority of the scanners

completed the scan within a half hour, which is acceptablafoautomated tool.

False Negatives

One of the bene ts of developing the WackoPicko web applicato test the scan-
ners is the ability for us to measure the false negativesaotinners. An ideal scanner
would be able to detect all vulnerabilities. In fact, we hag@up composed of students
with average security skills analyze WackoPicko. The stigléound all vulnerabili-
ties except for the forceful browsing vulnerability. The@uated scanners did not do
as well; there were a number of vulnerabilities that weredatéected by any scanner.

These vulnerabilities are discussed hereinafter.

57

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

B INITIAL
[0 CONFIG 27’103‘
10,000 [- - r el -
)
B B000 [l e .
3
)
© 6,000 [l =
E
[
24000 [l e -
<
<
&
2,000 [+ el g -

Burp
Hailstorm
Milescan
N-Stalker
Paros
w3af

x5
k] 5]
Pt (72}
=1 o
o o
< <

NTOSpider
Webinspect

Grendel-Scan

Figure 3.2: A graph of the time that it took each of the scammernish looking for
vulnerabilities.

Session ID: No scanner was able to detect the session ID vulnerabilitheradmin
login page. The vulnerability was not detected becausedher®rs were not given a
valid username/password combination for the admin interfd his is consistent with
what would happen when scanning a typical application, @aadiministration interface
would include powerful functionality that the scanner sldonot invoke, like view,
create, edit or delete sensitive user data. The session fonlg set on a successful
login, which is why this vulnerability was not detected byacanner.

Weak Password: Even though the scanners were not given a valid usernansg/pes
combination for the administrator web site, an administratcount with the combina-

tion of admin/admin was present on the system. NTOSpidettinasnly scanner that

58

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

successfully logged in with the admin/admin combinatiomwdver, it did not report

it as an error, which suggests that it was unable to detetthbdogin was successful,
even though the response that was returned for this requsstifferent from every
other login attempt.

Parameter Manipulation: The parameter manipulation vulnerability was not discov-
ered by any scanner. There were two causes for this: rsi tmkee of the scanners
(AppScan, NTOSpider, and w3af) input a different numbenttiee default value “1”

to theuserid parameter. Of the three, only NTOSpider used a value thaesstully
manipulated theserid parameter. The other reason was that in order to successfull
detect a parameter manipulation vulnerability, the scaneeds to determine which
pages require a valid username/password to access and ameshdo not and it is
clear that none of the scanners make this determination.

Stored SQL Injection: The stored SQL injection was also not discovered by any
scanners, due to the fact that a scanner must create an atcaliscover the stored
SQL injection. The reasons for this are discussed in moldetSection 3.3.4.
Directory Traversal: The directory traversal vulnerability was also not disagede

by any of the scanners. This failure is caused by the scateéng unable to upload

a picture. We discuss this issue in Section 3.3.4, when wlyzmaow each of the

scanners behaved when they had to upload a picture.

59

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Name INITIAL CONFIG MANUAL
Acunetix 1 7 4
AppScan 11 20 26
Burp 1 2 6
Grendel-Scan 15 16 16
Hailstorm 3 11 3
Milescan 0 0 0
N-Stalker 5 0 0
NTOSpider 3 1 3
Paros 1 1 1
w3af 1 1 9
Webinspect 215 317 297

Table 3.3: False positives.

Multi-Step Stored XSS: The stored XSS vulnerability that required a con rmation
step was also missed by every scanner. In Section 3.3.4, algzarhow many of the
scanners were able to successfully create a comment oruaepict

Forceful Browsing: No scanner found the forceful browsing vulnerability, whis
not surprising since it is an application-speci ¢ vulneiiija These vulnerabilities are
dif cult to identify without access to the source code of tiygplication [12].

Logic Flaw: Another vulnerability that none of the scanners uncoveras the logic
aw that existed in the coupon management functionality.s®In this case, some

domain knowledge about the application is needed to nd tiaerability.

60

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

False Positives

The total number of false positives for each of the scannamggurations are show
in Table 3.3. The number of false positives that each scaggrerates is an important
metric, because the greater the number of false positikedets useful the tool is to
the end user, who has to gure out which of the vulnerabsgitieported are actual aws
and which are spurious results of the analysis.

The majority of the false positives across all scanners wiei® to a supposed
“Server Path Disclosure.” This is an information leakagketability where the server
leaks the paths of local les, which might give an attackertsiabout the structure of
the le system.

An analysis of the results identi ed two main reasons whysthéalse positives
were generated. The rst is that while testing the applmatior le traversal or le
injection vulnerabilities, some of the scanners passedmeters with values of le
names, which, on some pages (e.g., the guestbook pagegdctugs le name to be
included in that page's contents. When the scanner theedéise page for a Server
Path Disclosure, it found the injected values in the pagéecinand generated a Server
Path Disclosure vulnerability report. The other reasortliergeneration of false pos-
itives is that WackoPicko uses absolute paths inhted attribute of anchors (e.g.,

/lusers/home.php), which the scanner mistook for the disclosure of paths é th

61

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

local system. Webinspect generated false positives bea#usoth the above reasons,
which explains the large amount of false positives produmetihe tool.

Some scanners reported genuine false positives: Hailsteparted a false XSS
vulnerability and two false PHP code injection vulnerdlas, NTOSpider reported
three false XSS vulnerabilities and w3af reported a fals€ B¥al() input injection

vulnerability.

Measuring and Comparing Detection Capabilities

Comparing the scanners using a single benchmark like Wacko®Boes not rep-
resent an exhaustive evaluation. However, we believe ltgatesults provide insights
about the current state of black-box web application viahgity scanners.

One possible way of comparing the results of the scannergasgng them in
a lattice. This lattice is ordered on the basisstiict dominance Scanner Astrictly
dominatesScanner B if and only if for every vulnerability discovereg $canner B,
Scanner A discovered that vulnerability with the same camagion level or simpler,
and Scanner A either discovered a vulnerability that ScaBndid not discover or
Scanner A discovered a vulnerability that Scanner B disealebut with a simpler
con guration. Strictly dominatedhas the property that any assignment of scores to

vulnerabilities must preserve tisérictly dominateselationship.

62

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

AppScan
@ NTOSplder

Weblnspect

Grendel-Scan

Figure 3.3: Dominates graph.

Figure 3.3 shows thetrictly dominateggraph for the scanners, where a directed
edge from Scanner A to Scanner B means that Scanséicily dominatesscanner B.
Becausestrictly dominatess transitive, if one scannstrictly dominatesnother it also
strictly dominatesll the scanners that the dominated scanner dominatesfaherall
redundant edges are not included. Figure 3.3 is organizédatdhe scanners in the
top level are those that are rgitictly dominatedy any scanners. Those in the second
level are strictly dominated by only one scanner and so ofil, thee last level, which
contains those scanners that strictly dominate no othensca

Some interesting observations arise from Figure 3.3. Nk&taloes not strictly
dominate any scanner and no scanner strictly dominatesis i§ due to the unique
combination of vulnerabilities that N-Stalker discoveestl missed. Burp is also inter-
esting due to the fact that it only dominates two scannerat®stanner dominates Burp

because it was the only scanner to discover the commandi|extion vulnerability.

63

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Name Detection INITIAL CONFIG MANUAL
Reachability Reachability Reachability

XSS Re ected 1 0 0 0

XSS Stored 2 0 0 0

SessionID 4 0 0 0

SQL Injection Re ected 1 0 0 0

Commandline Injection 4 0 0 0

File Inclusion 3 0 0 0

File Exposure 3 0 0 0

XSS Re ected behind 1 3 3 0

JavaScript

Parameter Manipulation 8 0 0 0

Weak password 3 0 0 0

SQL Injection Stored Login 7 7 3 3

Directory Traversal Login 8 8 6 4

XSS Stored Login 2 8 7 6

Forceful Browsing Login 8 7 6 3

Logic Flaws - Coupon 9 9 8 6

XSS Re ected behind ash 1 9 7 1

Table 3.4: Vulnerability scores.

While Figure 3.3 is interesting, it does not give a way to caneptwo scanners
where one does not strictly dominate the other. In order topare the scanners, we
assigned scores to each vulnerability present in WackoPitke scores are displayed
in Table 3.4. The “Detection” score column in Table 3.4 is hnany points a scanner
is awarded based on how dif cult it is for an automated tootl&tect the existence of
the vulnerability. In addition to the “Detection” score cbavulnerability is assigned a
“Reachability” score, which indicates how dif cult the wngrability is to reach (i.e., it
re ects the dif culty of crawling to the page that contairtsat vulnerability). There are

three “Reachability” scores for each vulnerability, cepending to how dif cult it is

64

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Name Score
Acunetix 14
Webinspect 13
Burp 13
N-Stalker 13
AppScan 10
w3af 9
Paros 6
Hailstorm 6
NTOSpider 4
Milescan 4
Grendel-Scan 3

Table 3.5: Final ranking.

for a scanner to reach the vulnerability when run in INITIALONFIG, or MANUAL
mode. Of course, these vulnerability scores are subjeatidedepend on the speci ¢
characteristics of our WackoPicko application. Howeveejrt values try to estimate
the crawling and detection dif culty of each vulnerability this context.

The nal score for each scanner is calculated by adding up'Bretection” score
for each vulnerability the scanner detected and the “Rdalitya score for the con-
guration (INITIAL, CONFIG and MANUAL) used when running #ascanner. In the
case of a tie, the scanners were ranked by how many vulnigiegiere discovered in
INITIAL mode, which was enough to break all ties. Table 3.6wh the nal ranking

of the scanners.

65

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

3.3.3 Attack and Analysis Capabilities

Analyzing how each scanner attempted to detect vulnetiasiljives us insight into
how these programs work and illuminates areas for furthegarch. First, the scanner
would crawl the site looking for injection points, typicalh the form of GET or POST
parameters. Once the scanner identi es all the inputs onge,p& then attempts to
inject values for each parameter and observes the respdiben a page has more
than one input, each parameter is injected in turn, and gyneio two parameters are
injected in the same request. However, scanners differ at Wiey supply as values of
the non-injected parameters: some have a default valu#2i8é or Peter Wiener
while others leave the elds blank. This has an impact on #saiits of the scanner, for
example the WackoPicko guestbook requires that botmamee andcomment elds
are present before making a comment, and thus the stratgggysd by each scanner
can affect the effectiveness of the vulnerability scanmiragess.

When detecting XSS attacks, most scanners employed sitedaniques, some
with a more sophisticated attempt to evade possible lteamtothers. One particularly
effective strategy employed was to rst input random datthwiarious combinations
of dangerous characters, such'as,’,<, and > , and then, if one of these com-
binations was found unchanged in the response, to atterapnjéction of the full
range of XSS attacks. This technique speeds up the anaigsisantly, because the

full XSS attack is not attempted against every input vecifferently, some of the

66

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

scanners took an exhaustive approach, attempting the dollugy of attacks on every
combination of inputs.

When attempting a XSS attack, the thorough scanners woigdtithe typical
<script> alert('xss') </script> as well as a whole range of XSS attack
strings, such as JavaScript in a tag with tihenouseover attribute, in arimg, div
or meta tag, oriframe . Other scanners attempted to evade lters by using a diftere
JavaScript function other thaert , or by using a different casing stript , such
asScRiPt .

Unlike with XSS, scanners could not perform an easy test ttuee a parameter
from thorough testing for other Unsanitized Input vulnéliibs because the results of
a successful exploit might not be readily evident in the oase. This is true for the
command-line injection on the WackoPicko site, becauseothput of the injectable
command was not used in the response. Burp, the only scamatevas able to suc-
cessfully detect the command line injection vulnerahiliid so by injecting ping
-c 100 localhost and noticing that the response time for the page was much
slower than when nothing was injected.

This pattern of measuring the difference in response tingssalso seen in detecting
SQL injections. In addition to injecting something with alS€ntrol character, such
as tick or quote and seeing if an error is generated, the scaatso used a time-delay

SQL injection, inputtingvaitfor delay '0:0:20' and seeing if the execution

67

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

was delayed. This is a variation of the technique of usingtdrlay SQL injection to
extract database information from a blind SQL vulneraypilit

When testing for File Exposure, the scanners were typithéysame; however one
aspect caused them to miss the WackoPicko vulnerabilitgh Beanner that was look-
ing for this vulnerability input the name of a le that they éw existed on the system,
such adetc/passwd on UNIX-like systems o€:\boot.ini for Windows. The
scanners then looked for known strings in the response. iflkealty in exploiting the
WackoPicko le exposure was including the null-termingtioharacter %00 at the
end of the string, which caused PHP to ignore anything adgi@etéapplication after
the/etc/passwd part. The results show that only 4 scanners successfuttpadised
this vulnerability.

The remote code execution vulnerability in WackoPicko mikir to the le ex-
posure vulnerability. However, instead of injecting knowes, the scanners injected
known web site addresses. This was typically from a domaarstianner's developers
owned, and thus when successfully exploited, the injecégg @ppeared instead of the
regular page. The same dif culty in a successful explomatéxisted in the File Ex-
posure vulnerability, so a scanner had to &Jd0 after the injected web site. Only 3

scanners were able to successfully identify this vulnditgbi

68

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

3.3.4 Crawling Capabilities

The number of URLSs requested and accessed varies condidanabng scanners,
depending on the capability and strategies implementdueictawler and attack com-
ponents. Table 3.6 shows the number of times each scannex alR@STor GET
request to a vulnerable URL when the scanners were run inlMNUTCONFIG, and
MANUAL mode. For instance, from Table 3.6 we can see thatdtiaim was able to
access many of the vulnerable pages that required a validarse/password when run
in INITIAL mode. It can also be seen that N-Stalker takes atgino-like approach
to scanning; it has over 1,000 accesses for each vulnerdBle While in contrast
Grendel-Scan never had over 50 accesses to a vulnerable URL.

In the following, we discuss the main challenges that thevleacomponents of the

web application scanners under test faced.

HTML

The results for the stored XSS attack reveal some integestiaracteristics of the
analysis performed by the various scanners. For instanog, Bsrendel-Scan, Hail-
storm, Milescan, N-Stalker, and w3af were unable to disctwestored XSS vulnera-
bility in INITIAL con guration mode. Burp and N-Stalker fé&&d because of defective
HTML parsing. Neither of the scanners correctly interpdetiee <textarea> tag

as an input to the HTML form. This was evident because bothrsas only sent the

69

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

name parameter when attempting to leave a comment on the guéstiidioen run in
MANUAL mode, however, the scanners discovered the vulnknglbecause the user
provided values for all these elds. Grendel-Scan and Midgsmissed the stored XSS
vulnerability for the same reason: they did not attempGSTrequest unless the user
used the proxy to make the request.

Hailstorm did not try to inject any values to the guestboolewim INITIAL mode,
and, instead, usetkstval as thename parameter andDefault text as the
comment parameter. One explanation for this could be that Hailsteas run in the
default “turbo” mode, which Cenzic claims catches 95% oheudbilities, and chose
not to fuzz the form to improve speed.

Finally, w3af missed the stored XSS vulnerability due tovieg one parameter
blank while attempting to inject the other parameter. It waable to create a guestbook

entry, because both parameters are required.

Uploading a Picture

Being able to upload a picture is critical to discover thegbiory Traversal vulner-
ability, as a properly craftethg parameter can overwrite any le the web server can
access. It was very dif cult for the scanners to succesgfufiload a le: no scanner
was able to upload a picture in INITIAL and CONFIG modes, anty &ppScan and

Webinspect were able to upload a picture after being showedddo itin MANUAL

70

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

con guration, with AppScan and Webinspect uploading 324 466 pictures respec-
tively. Interestingly, Hailstorm, N-Stalker and NTOSpideever successfully uploaded
a picture, even in MANUAL con guration. This surprising rdsis due to poor prox-
ies or poor in-application browsers. For instance, Haifatincludes an embedded
Mozilla browser for the user to browse the site when they wawlio so manually, and
after repeated attempts the embedded browser was nevetoalysoad a le. The
other scanners that failed, N-Stalker and NTOSpider, haldyfad TTP proxies that did
not know how to properly forward the le uploaded, thus thguest never completed

successfully.

Client-side Code

The results of the WIVET tests are shown in Figure 3.4. Analyzhe WIVET
results gives a very good idea of the JavaScript capaBiliieach scanner. Of all the 54
WIVET tests, 24 required actually executing or understaw3cript code; that is, the
test could not be passed simply by using a regular expressiextract the links on the
page. Webinspect was the only scanner able to complete thiéafynamic JavaScript
challenges. Of the rest of the scanners, Acunetix and NTd&8mnly missed one
of the dynamic JavaScript tests. Even though Hailstorm enlisk? of the dynamic
JavaScript tests, we believe that this is because of a bulgeiddvaScript analysis

engine and not a general limitation of the tool. In fact, Bi&@itm was able to correctly

71

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

100%

9096 [~ - o [t =
B 80% | [[—
9 —

E T0% [o | =
g 60l =
|_
o 50% | | -
L
> 40% o e e =
o - R O O e —
o
g 2% 1 o e -
10% - 1l e HH ------------------- =
0% ks bad = = =1 [y ot c c‘z_ u‘a l
e £ 8§ E & § § 8 § & &g
: £ 2 2 % 4 % 2 3 £ 3
£ o = = 7} f
o

Figure 3.4: WIVET results.

handle JavaScript on trenmouseup andonclick parametrized functions. These
tests were on parametrizeshmouseout andonmousedown functions, but since
Hailstorm was able to correctly handle toemouseup andonclick parametrized
functions, this can be considered a bug in Hailstorm's JespSparsing. From this,
it can also be concluded that AppScan, Grendel-Scan, Mifesand w3af perform no
dynamic JavaScript parsing. Thus, Webinspect, AcunetbQ8pider, and Hailstorm
can be claimed to have the best JavaScript parsing. ThehaichtStalker found the
re ected XSS vulnerability behind a JavaScript form in WaPBkcko suggests that it
can execute JavaScript, however it failed the WIVET benckrsa we cannot evaluate

the extent of the parsing performed.

72

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

In looking at the WIVET results, there was one benchmarkribagcanner was able
to reach, which was behind a Flash application. The apphicéiad a link on a button's
onclick event, however this link was dynamically created at run tiffieis failure
shows that none of the current scanners processes Flagmtenth the same level
of sophistication as JavaScript. This conclusion is sujggoy none of the scanners
discovering the XSS vulnerability behind a Flash applmain WackoPicko when in

INITIAL or CONFIG mode.

Authentication

Table 3.7 shows the attempts that were made to create anrdcmouhe Wack-
oPicko site. The Name column is the name of the scanner, €gbd” is the number
of accounts successfully created, and “Error” is the nundfeaccount creation at-
tempts that were unsuccessful. Note that Table 3.7 refduetseisults of the scanners
when run in INITIAL mode only, because the results for thesotton gurations were
almost identical.

Table 3.7 shows the capability of the scanners to handleragestration function-
ality. As can be seen from Table 3.7, only ve of the scannegsanable to successfully
create an account. Of these, Hailstorm was the only one &rdge this ability to visit

vulnerable URLSs that required a login in its INITIAL run.

73

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Creating an account is important in discovering the stor®i $jection that no
scanner successfully detected. It is fairly telling thatrethough ve scanners were
able to create an account, none of them detected the vulhigrdbis entirely possible
that none of the scanners actively searched for stored Sf@ttions, which is much
harder to detect than stored XSS injections.

In addition to being critically important to the WackoPickenchmark, being able
to create an account is an important skill for a scanner te aden analyzing any web
site, especially if that scanner wishes to be a point-ara-gieb application vulnera-

bility scanner.

Multi-step Processes

In the WackoPicko web site there is a vulnerability thatiggered by going through
a multi-step process. This vulnerability is the stored X8%iwtures, which requires
an attacker to con rm a comment posting for the attack to becessful. Hailstorm
and NTOSpider were the only scanners to successfully ceeatanment on the INI-
TIAL run (creating 25 and 1 comment, respectively). Thisnportant for two reasons:
rst, to be able to create a comment in the INITIAL run, the sear had to create an
account and log in with that account, which is consistenhwable 3.7. Also, all 25

of the comments successfully created by Hailstorm onlyaioet the texDefault

74

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

text , which means that Hailstorm was not able to create a comrhanéxploited the
vulnerability.

All scanners were able to create a comment when run in MANU&®h guration,
since they were shown by the user how to carry out this taskveder, only AppScan,
Hailstorm, NTOSpider, and Webinspect (creating 6, 21, @ 2rcomments respec-
tively) were able to create a comment that was different tharone provided by the
user. Of these scanners only Webinspect was able to createraent that exploited the
vulnerability, <iFrAmE sRc=hTtP://XSrFtEST .sPi/> </iFrAmE> , how-
ever Webinspect failed to report this vulnerability. Onaysible explanation for not
detecting would be the scanners' XSS strategy discusseddtiod 3.3.3. While test-
ing thetext parameter for a vulnerability, most of the scanners redlibat it was
properly escaped on the preview page, and thus stopped) tiyimject XSS attacks.
This would explain the directory traversal attack comméat AppScan successfully
created and why Hailstorm did not attempt any injection sTitian example where the

performance optimization of the vulnerability analysis ¢@ad to false negatives.

In nite Web Sites

One of the scanners attempted to visit all of the pages ofithéeé calendar. When
running Grendel-Scan, the calendar portion of WackoPi@atb be removed because

the scanner ran out of memory attempting to access every pageetix, Burp, N-

75

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Stalker and w3af had the largest accesses (474, 691, 178808ddespectively), due
to their attempts to exploit the calendar page. The othamrsrg used less accesses

(between 27 and 243) because they were able to determinedieator was present.

3.4 Lessons Learned

We found that the crawling of modern web applications can bereus challenge
for today's web vulnerability scanners. A rst class of pteims we encountered con-
sisted of implementation errors and the lack of support émmonly-used technolo-
gies. For example, handling of multimedia data (image wusdaxposed bugs in cer-
tain proxy-based scanners, which prevented the tools frelineting attacks to the
application under test. Incomplete or incorrect HTML passeaused scanners to ig-
nore input vectors that would have exposed vulnerabiliti€se lack of support for
JavaScript (and Flash) prevented tools from reaching vabie pages altogethe3up-
port for well-known, pervasive technology should be impcv

The second class of problems that hindered crawling ise@l&tthe design of mod-
ern web applications. In particular, applications with gdex forms and aggressive
checking of input values can effectively block a scannezyenting it from crawling
the pages “deep” in the web site structure. Handling thiblgrm could be done, for

example, by using heuristics to identify acceptable inutby reverse engineering

76

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

the input Iters. Furthermore, the behavior of an applioatcan be wildly different de-
pending on its internal “state,” i.e., the values of intérrsaiables that are not explicitly
exposed to the scanner. The classic example of applicattsis whether the current
user is logged in or not. A scanner that does not correctlyehanld track the state of
an application (e.g., it does not realize that it has beeonaatically logged out) will
fail to crawl all relevant parts of the applicatiodlore sophisticated algorithms are
needed to perform “deep” crawling and track the state of tipplecation under test

Current scanners fail to detect (or even check for) apptinagpeci ¢ (or “logic”)
vulnerabilities. Unfortunately, as applications beconm@rcomplex, this type of vul-
nerabilities will also become more prevaleMore research is warranted to automate
the detection of application logic vulnerabilities

In conclusion, far from being point-and-click tools to beedsby anybody, web
application black-box security scanners require a sojghistd understanding of the

application under test and of the limitations of the toolprder to be effective.

3.5 Conclusions

This chapter presented the evaluation of eleven black-beix wulnerability scan-

ners. The results of the evaluation clearly show that thiétyabs crawl a web applica-

77

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

tion and reach “deep” into the application's resources isrgsrtant as the ability to
detect the vulnerabilities themselves.

It is also clear that although techniques to detect certiaiciskof vulnerabilities are
well-established and seem to work reliably, there are whi@sses of vulnerabilities
that are not well-understood and cannot be detected bydte gt-the-art scanners. We
found that eight out of sixteen vulnerabilities were noedétd byanyof the scanners.

We have also found areas that require further research swéfeapplication vul-
nerability scanners can improve their detection of vulb#itees. Deep crawling is vital
to discover all vulnerabilities in an application. ImproMeverse engineering is neces-
sary to keep track of the state of the application, which caabke automated detection
of complex vulnerabilities.

Finally, we found that there is no strong correlation betweest of the scanner and
functionality provided as some of the free or very costaffe scanners performed as

well as scanners that cost thousands of dollars.

78

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Scanner Re ected XSS Stored XSS Re ected SQL Injection

INITIAL CONFIG MANUAL
Acunetix 496 638 498 613 779 724 544 709 546
AppScan 581 575 817| 381 352 492 274 933 628
Burp 256 256 207 192 192 262 68 222 221
Grendel-Scan 0 0 44 1 1 3 14 34 44
Hailstorm 232 229 233 10 205 209 45 224 231
Milescan 104 0 208 50 0 170 75 272 1,237
N-Stalker 1,738 1,162 2,689 2,484 2,100 3,475 2,764 1,022 2,110
NTOSpider 856 679 692 252 370 370 184 5 5
Paros 68 68 58 126 126 110| 151 299 97
w3af 157 157 563 259 257 464| 1,377 1,411 2,634
Webinspect 108 108 105 631 631 630| 297 403 346
Scanner Command-line Injection File Inclusion / XSS Re ected - JavaScript

File Exposure /
Weak password

INITIAL CONFIG MANUAL
Acunetix 495 637 497 198 244 200 670 860 671
AppScan 189 191 288| 267 258 430 0 0 442
Burp 68 68 200 125 316 320 0 0 178
Grendel-Scan 1 1 3 2 2 5 0 0 2
Hailstorm 180 160 162 8 204 216 153 147 148
Milescan 0 0 131 80 0 246 0 0 163
N-Stalker 2,005 1,894 1,987 1,437 2,063 1,824 1,409 1,292 1,335
NTOSpider 105 9 9 243 614 614 11 13 13
Paros 28 28 72 146 146 185 0 0 56
w3af 140 142 253 263 262 470 0 0 34
Webinspect 164 164 164 239 237 234| 909 909 0
Scanner Parameter Manipulation Directory Traversal Logic Flaw

INITIAL CONFIG MANUAL
Acunetix 2 0 2 35 1,149 37 0 0 5
AppScan 221 210 222 80 70 941 0 0 329
Burp 192 194 124 68 68 394 0 0 314
Grendel-Scan 3 3 6 1 1 3 0 0 6
Hailstorm 3 143 146 336 329 344| 131 132 5
Milescan 105 0 103 8 0 163 0 0 1
N-Stalker 1,291 1,270 1,302 22 2,079 4,704 0 0 3
NTOSpider 107 115 115 11 572 572 0 11 11
Paros 72 72 72 14 14 0 0 0 114
w3af 128 128 124 31 30 783 0 0 235
Webinspect 102 102 102 29 29 690 0 8 3
Scanner Forceful Browsing XSS Re ected behind ash

INITIAL CONFIG MANUAL
Acunetix 0 0 206 1 34 458
AppScan 0 0 71 0 0 243
Burp 0 0 151 0 0 125
Grendel-Scan 0 0 1 0 0 3
Hailstorm 102 102 105 0 0 143
Milescan 0 0 60 0 0 68
N-Stalker 0 0 2 0 0 1,315
NTOSpider 0 0 0 0 11 11
Paros 0 0 70 0 0 60
w3af 0 0 270 0 0 119
Webinspect 0 118 82 0 0 97

Table 3.6: Number of accesses to vulnerable web pages inAN|TCONFIG, and
MANUAL modes.

79

Chapter 3. An Analysis of Black-Box Web Application Vulnbitty Scanners

Name Successful Error
Acunetix 0 431
AppScan 1 297
Burp 0 0
Grendel-Scan 0 0
Hailstorm 107 276
Milescan 0 0
N-Stalker 74 1389
NTOSpider 74 330
Paros 0 176
w3af 0O 538
Webinspect 127 267

Table 3.7: Account creation.

80

Chapter 4

A State-Aware Black-Box Web
Vulnerability Scanner

We identi ed the biggest problem common to black-box weblegagtion vulnera-
bility scanners in the previous chapter: The scanners tineatveb application as if it
was a web site, and ignore the fact that it issplicationwith state. In this chapter, we
describe methods and approaches to automatically infestétie of a web application
in a black-box manner, and we apply this to a black-box welliegdon vulnerability

scanner.

Web applications are the most popular way of deliveringisesvvia the Internet.
A modern web application is composed of a back-end, serderqart (often writ-
ten in Java or in interpreted languages such as PHP, Rubytibo® running on the

provider's server, and a client part running in the user'®Wweowser (implemented in

81

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

JavaScript and using HTML/CSS for presentation). The twispaften communicate
via HTTP over the Internet using Asynchronous JavaScrigbaiL (AJAX) [56].

The complexity of modern web applications, along with thengndifferent tech-
nologies used in various abstraction layers, are the ragtecaf vulnerabilities in web
applications. In fact, the number of reported web applacatiulnerabilities is growing
sharply [52,132].

The occurrence of vulnerabilities could be reduced by betteication of web de-
velopers, or by the use of security-aware web applicatioeld@ment frameworks [34,
119], which enforce separation between structure and nbafenput and output data.
In both cases, more effort and investment in training is iregk) and, therefore, cost
and time-to-market constraints will keep pushing for therent fast-but-insecure de-
velopment model.

A complementary approach for ghting security vulneratds is to discover and
patch bugs before malicious attackers nd and exploit th@me way is to use a white-
box approach, employing static analysis of the source cadedB, 71, 81]. There
are several drawbacks to a white-box approach. First, thengal applications that
can be analyzed is reduced to only those applications tleathestarget programming
language. In addition, there is the problem of substandilgkf positives. Finally, the

source code of the application itself may be unavailable.

82

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

The other approach to discovering security vulnerabdiiie web applications is
by observing the application's output in response to a spagput. This method of
analysis is calledblack-boxtesting, as the application is seen as a sealed machine with
unobservable internals. Black-box approaches are ablerform large-scale analysis
across a wide range of applications. While black-box apgrea usually have fewer
false positives than white-box approaches, black-boxaggtres suffer from a discov-
erability problem: They need to reach a page to nd vulndrads on that page.

Classical black-box web vulnerability scanners crawl a agplication to enumer-
ate all reachable pages and then fuzz the input data (URLnedeas, form values,
cookies) to trigger vulnerabilities. However, this apmioagnores a key aspect of
modern web applications: Any request can change the stalte afeb application.

In the most general case, the state of the web applicationyiglata (database,
lesystem, time) that the web application uses to deterntmeutput. Consider a forum
that authenticates users, an e-commerce application wisers add items to a cart, or

a blog where visitors and administrators can leave commeéntall of these modern
applications, the way a user interacts with the applicatietermines the application’s
state.

Because a black-box web vulnerability scanner will nevéectea vulnerability on a
page that it does not see, scanners that ignore a web appiisatate will only explore

and test a (likely small) fraction of the web application.

83

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

In this chapter, we propose to improve the effectivenesslatksbox web vul-
nerability scanners by increasing their capability to ustind the web application's
internal state. Our tool constructs a partial model of thé application's state ma-
chine in a fully-automated fashion. It then uses this modéltz the application in a
state-aware manner, traversing more of the web applicatidrthus discovering more
vulnerabilities.

The main contributions of this chapter are the following:

A black-box technique to automatically learn a model of a vaiplication's

State.

A novel vulnerability analysis technique that leveragesieb application's state

model to drive fuzzing.

An evaluation of our technique, showing that both code cayerand effective-

ness of vulnerability analysis are improved.

4.1 Motivation

Crawling modern web applications means dealing with the aygddication's chang-
ing state. Previous work in detecting work ow violations2[136, 48, 88] focused on

navigation, where a malicious user can access a page tmaersled only for admin-

84

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

login.php index.php

Figure 4.1: Navigation graph of a simple web application.

index.php index.php

login.php
S0

Y

S.1 view.php

Figure 4.2: State machine of a simple web application.

istrators. This unauthorized access is a violation of theldper's intended work- ow
of the application.

We wish to distinguish a navigation-based view of the webliagfon, which is
simply derived from crawling the web application, from thelwmapplication's internal
state machine. To illustrate this important difference wiltuse a small example.

Consider a simple web application with three pagedex.php , login.php ,
andview.php . Theview.php page is only accessible after tlogin.php page
is accessed. There is no logout functionality. A client aso®y this web application
might make a series of requests like the following:
hindex.php ,login.php ,index.php ,view.php

index.php , view.php i

85

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Analyzing this series of requests from a navigation perpecreates a navigation
graph, shown in Figure 4.1. This graph shows which page isssilale from every other
page, based on the navigation trace. However, the naviggtaph does not represent
the information thawiew.php is only accessible after accessilagin.php , or
thatindex.php has changed after requestitagin.php (it includes the link to
view.php).

What we are interested in is not how to navigate the web agijic, but how the
requests we make in uence the web application's internatestnachine. The sim-
ple web application described previously has the intertadésnachine shown in Fig-
ure 4.2. The web application starts with the internal sg&at® Arrows from a state
show how a request affects the web application’s interratkestachine. In this ex-
ample, in the initial statendex.php does not change the state of the application,
howeverlogin.php causes the state to transition fr&0 to S_1. In the new state
S_1, bothindex.php andview.php do not change the state of the web application.

The state machine in Figure 4.2 contains important infoionadbout the web ap-
plication. First, it shows thdbgin.php permanently changes the web application’s
state, and there is no way to recover from this change. Sedbstows that the
index.php page is seen in two different states.

Now the guestion becomes: “How does knowledge of the wehcgijn's state

machine (or lack thereof) affect a black-box web vulnergbsicanner?” The scanner's

86

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

goal is to nd vulnerabilities in the application, and to do & must fuzz as many
execution paths of the server-side code as possiltensider the simple application
described in Figure 4.2. In order to fuzz as many code pathsoasible, a black-
box web vulnerability scanner must fuzz theex.php page in both stateS_0
and S_1, since the code execution afdex.php can follow different code paths
depending on the current state (more precisely, in Sateindex.php includes a
link to view.php , which is not present i6_0).

A black-box web vulnerability scanner can also use the wethigation's state ma-
chine to handle requests that change state. For exampla,fwi@ng thdogin.php
page of the sample application, a fuzzer will try to make ssvequests to the page,
fuzzing different parameters. However, if the rst requéestogin.php changes
the state of the application, all further requesttogin.php will no longer execute
along the same code path as the rst one. Thus, a scanner mustknowledge of
the web application's state machine to test if the state wasged, and if it was, what
requests to make to return the application to the previcate $tefore continuing the
fuzzing process.

We have shown how a web application's state machine can bedged to improve
a black-box web vulnerability scanner. Our goal is to infiera black-box manner, as

much of the web application’s state machine as possiblendJsinly the sequence of

IHereinafter, we assume that the scanner relies on fuzaedbi@chniques. However, any other
automated vulnerability analysis technique would bennf our state-aware approach.

87

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

requests, along with the responses to those requests, Weaboodel of as much of
the web application's state machine as possible. In thevatlg section, we describe,
at a high level, how we infer the web application’s state nraehThen, in Section 4.3,

we provide the details of our technique.

4.2 State-Aware Crawling

In this section, we describe our state-aware crawling agugdro In Section 4.2.1,
we describe web applications and de ne terms that we willingbe rest of the chap-
ter. Then, in Section 4.2.2, we describe the various fadetiseostate-aware crawling

algorithm at a high level.

4.2.1 Web Applications

Before we can describe our approach to inferring a web agujbic’s state, we must
rst de ne the elements that come into play in our web apptica model.

A web application consists of a server component, which@tsddTTP requests.
This server component can be written in any language, anttla@e many differ-
ent means of storage (database, lesystem, memcache)r pdbeessing a request,

the server sends back a response. This response encapsolaie content, typically

88

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

HTML. The HTML content contains links and forms which deberhow to make fur-
ther requests.
Now that we have described a web application at a high levelpaed to de ne

speci c terms related to web applications that we use in &s¢ of this chapter.

Request—The HTTP request made to the web application. deslanything
(typically in the form of HTTP headers) that is sent by therusethe web ap-
plication: the HTTP Method, URL, ParameteGETandPOST), Cookies, and

User-Agent.

Response—The response sent by the server to the user. dachelHTTP Re-

sponse Code and the content (typically HTML).

Page—The HTML page that is contained in the response fronbaapplication.

Link—Element of an HTML page that tells the browser how toateea sub-
sequent request. This can be either an anchor or a form. Amoaraiways
generates &ETrequest, but a form can generate eith@@STor GETrequest,

depending on the parameters of the form.

State—Anything that in uences the web application's setsiele code execu-

tion.

89

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

GET /logout.php

POST /login.php POST /addtem.php

POST /login.php

GET /I t.ph GET /deleteitem.ph
ogout.php eletettem.php POST /purchase.php
GET /logout.php
purchasedtem

POST /login.php

i

Figure 4.3: The state machine of a simple e-commerce apiplica

Web Application Model

We use asymbolic Mealy machinfl5] to model the web application as a black-
box. A Mealy machine is an automaton where the input to theraaton, along with
the current state, determines the output (i.e., the paghipeal by the response) and the
next state. A Mealy machine operates on a nite alphabetpfimnd output symbols,
while a symbolic Mealy machine uses an in nite alphabet @iinand output symbols.

This model of a web application works well because the inpatweb application,
along with the current state of the web application, deteesithe output and the next
state. Consider a simple e-commerce web application wélsthte machine show in
Figure 4.3. In this state graph, all requests except for ties deaving a state bring the
application back to the same state. Therefore, this staghgoes not show all the
request that can be made to the application, only the subsequests that change the
state.

For instance, in the initial stat®_0, there is only one request that will change
the state of the application, namdNOST /login.php . This change logs the user

into the web application. From the state_items , there are two requests that can

90

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

change the stat&ET /logout.php which returns the user to the initial ste®e0
andPOST /add_item.php to add an item to the user's shopping cart.

Note that the graph shown in Figure 4.3 is not a strongly corauegraph—that
is, every state cannot be reached by every other state. drexample, purchasing an
item is a permanent action, it irrecoverably changes thie there is no link from
purchased _item toitem _.in _cart). Another interesting aspect is that one re-
quest,GET /logout.php , leads to three different states. This is because once the
web application's state has changed, logging out, and thek im, does not change the

state of the cart.

4.2.2 Inferring the State Machine

Inferring a web application's state machine requires thitalo detect when the
state of the web application has changed. Therefore, wevethra description of the
state-change detection algorithm, then explain the otberponents that are required
to infer the state machine.

The key insight of our state-change algorithm is the follogvi\We detect that the
state of the web application has changed when we make andder@quest and get a
different response. This is the only externally visibleseffof a state-change: Providing

the same input causes a different output.

91

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Using this insight, our state-change detection algorithonks, at a high level, as
follows: (1) Crawl the web application sequentially, makirequests based on a link
in the previous response. (2) Assume that the state staysathe, because there is no
evidence to the contrary. (3) If we make a request identicalgrevious request and get
a different response, then we assume that some requestliseizst identical request
changed the state of the web application.

The intuition here is that a Mealy machine will, when givee game input in the
same state, produce the same output. Therefore, if we serghthe request and get
a different output, the state must have changed. By detpthi@ web application's
state changes only using inputs and outputs, we are agnagticespect to bothivhat
constitutes the state information awtlerethe state information is located. In this way,
we are more generic than approaches that only consider tabate to hold the state
of the application, when in fact, the local le system or evaemory could hold part
of the web application’s state.

The state-change detection algorithm allows us to infemnthe web application’s
state has changed, yet four other techniques are neceesafgrta state machine: the
clustering of similar pages, the identi cation of stateadlging requests, the collapsing

of similar states, and navigating.

92

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Clustering similar pages. We want to group together pages that are similar, for two
reasons: To handle in nite sections of web applicationd #ra generated from the
same code (e.g., the pages of a calendar) and to detect whspanse has changed.
Before we can cluster pages, we model them using the linkeh(aa and forms)
present on the page. The intuition here is that the links rid@sbow the user can
interact with the web application. Therefore, changes tatvéhuser can do (new or
missing links) indicate when the state of the web applicetias changed. Also, in nite
sections of a web application will share the same link stmgcand will cluster together.
With our page model, we cluster pages together based onitilestructure. Pages
that are in different clusters are considered differente @htails of this approach are
described in Section 4.3.1.
Determining the state-changing request.The state-change detection algorithm only
says that the state has changed, however we need to detevinicterequest actually
changed the state. When we detect a state change, we havp@aélhst of requests
with identical requests at the start and end. One of the stgure this list changed the
state. We use a heuristic to determine which request chahgestate. This heuristic
favors newer requests over older requeB8STrequests oveGETrequests, and re-
guests that have previously changed the state over thoshabha never changed the

state. The details are described in Section 4.3.2.

93

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Collapsing similar states.The state-change detection algorithm detects only when the
state has changed, however, we need to understand if waedttw a previous state.
This is necessary because if we detect a state change, wetavinow if this is a
state we have previously seen or a brand new state. We relsigsqadblem to a graph
coloring problem, where the nodes are the states and an etigedn two nodes means
that the states cannot be the same. We add edges to this grapimp the requests and
responses, along with rules to determine when two statestae the same. After the
graph is colored, states that are the same color are collapeethe same state. Details
of this state-merging technique are provided in Sectior84.3
Navigating. We have two strategies for crawling the web application.

First, we always try to pick a link in the last response. Th®real behind choosing
a link in the last response is that we emulate a user browkmgveb application. In
this way, we are able to handle multi-step processes, supheagewing a comment
before it is committed.

Second, for each state, we make requests that are the lkedgtdi change the state
of the web application. The intuition here is that we wantitst see as much of a state
as possible, without accidentally changing the state, & the state change is perma-

nent. Full details of how we crawl the web application arevjted in Section 4.3.4

94

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

4.3 Technical Details

Inferring a web application's state machine requires cetaty de ning aspects
such as page clustering or navigation. However, we wishresstthat this is one

implementation of the state machine inference algorithchiamay not be optimal.

4.3.1 Clustering Similar Pages

Our reason for grouping similar pages together is twofotévent in nite scanning
of the website by grouping the “in nite” areas together aretatt when the state has

changed by comparing page responses in an ef cient manner.

Page Model

The output of a web application is usually an HTML documentéin actually be
any arbitrary content, but we only consider HTML content &dTP redirects). An
HTML page is composed of navigational information (anchamgl forms) and user-
readable content. For our state-change detection algaritve are not interested in
changes to the content, but rather to changes in the namigsttiucture. We focus on
navigation changes because the links on a page de ne how @aisénteract with the

application, thus, when the links change, the web appboatistate has changed.

95

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

/html/body/div/span/a /html/body/div/form

pro le.php @.php
(©) ®

Figure 4.4: Representation of a page's link vectors stareddre x tree. There are ve
links present on this tree, as evidenced by the number ofiedds.

Therefore, we model a page by composing all the anchors antsfarirst, every

anchor and form is transformed into a vector constructedlbsAfs:
hdompath, action, params, valuesi

where:

dompath is the DOM Document Object Modgpath of the HTML link (anchor

or form);

action is a list where each element is from theef (for anchors) omlction

(for forms) attribute split by */';

96

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

@body/divlspan/a. lhtml/body/div@
@page), (all, sorted), (text, em@

©.0.2,6) (NLD, 6) > (6.9, (165, 60)

Figure 4.5: Abstract Page Tree. Every page's link vectotasesl in this pre x tree.
There are seven pages in this tree. The page link vector figard-4.4 is highlighted
in bold.

params is the (potentially empty) set of parameter names of the foranchor;

values is the set of values assigned to the parameters listpariams.

For instance, an anchor tag with theef attribute of/user/profile.php?id=

0&page might have the following link vector:

HWhtml/body/div/span/a/user pro le.php, (id, page) (0)i

All link vectors of a page are then stored in a pre x tree. Tjprie x tree is the model
of the page. A pre x tree for a simple page with ve links is skl in Figure 4.4. The
link vector previously described is highlighted in bold iilg&re 4.4.

HTTP redirects are handled as a special case, where the lenheet is a special

redirectelement having the target URL as the value oflteationattribute.

97

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Page Clustering

To cluster pages, we use a simple but ef cient algorithm. Asalibed in the previ-
ous section, the model of a page is a pre x tree representinpelinks contained in
the page.

These pre x trees are translated into vectors, where eement of this vector is
the set of all nodes of a given level of the pre x tree, staytfrom the root. At this
point, all pages are represented byage link vectorFor example, Figure 4.4 has the

following page link vector:

h(/html/body/div/span/a/html/body/div/forn),
(/luser /posh,
(pro le.php, edit.php,
((id, page, (all, sorted, (text, email id)),
((0), (0, 1), (5), (NULL), (5))i
The page link vectors for all pages are then stored in angiteex tree, called the
Abstract Page Tre€APT). In this way, pages are mapped to a leaf of the tree. age
which are mapped to the same leaf have identical page linloreand are considered
to be the same page. Figure 4.5 shows an APT with seven padespdge from
Figure 4.4 is bold in Figure 4.5.
However, we want to cluster together pages whose page lictiorsedo not match

exactly, but are similar (e.g., shopping cart pages withfferéint number of elements

98

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

in the cart). A measure of the similarity between two pagé®ig many elements from
the beginning of their link vectors are the same betweenvtbepages. From the APT
perspective, the higher the number of ancestors two pagase@) share, the closer
they are.

Therefore, we create clusters of similar pages by seleetingde in the APT and
merging into one cluster, called @&bstract Pageall the leaves in the corresponding
subtree. The criteria for deciding whether to cluster arggbof deptin from the root

is the following:

The number of leaves is greater than the median number afdezfvall its sib-
lings (including itself); in this way, we cluster only suéés which have a larger-

than-usual number of leaves.

There are at leadt(n) leaves in the subtree, whefgn) is inversely related to
n. The intuition is that the fewer ancestors a subtree hasrimuon (the higher
on the pre x tree it is), the more pages it must have to clugtem together. We
have found that the functioh(n) = 8(1 + ﬁ) works well by experimental

analysis on a large corpus of web pages.

The pages share the sadwnpath and the rst element of thaction list of the
page link vector; in this way, all the pages that are clustéogether share the

same link structure with potentially different parametansl values.

99

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

4.3.2 Determine the State-Changing Request

When a state change is detected, we must determine whiceseagtually changed
the web application’s state. Recall that we detect a stategdiwhen we make a request
that is identical to a previous request, yet has differetpuaiu At this point, we have a
list of all the requests made between the latest recRestd the requesR®closest in
time toR such thaR is identical toR®. We use a heuristic to determine which request
in this list changed the web application's state, chooshegrequest betweenR®and

R which maximizes the function:
SCOrénN; transitions Ni.seen, distance;)
where:
Ni transition 1S the number of times the request caused a state transition;
Ni seen IS the number of times the request has been made;

distance; is how many requests have been made between reRuast request

The functionscore is de ned as:

score(Ni transitions Ni seen, distance;) =

Nitransiion +12 BOOST;
1 (1 Niseen +1) + distance; +1

100

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

BOOST; is .2 forPOSTrequests and .1 faBETrequests.

We construct thecore function to capture two properties of web applications:

1. A POST request is more likely to change the state than a @gliesst. This
is suggested by the HTTP speci cation, asgbre captures this intuition with

BOOST..

2. Resistant to errors. Because we cannot prove that thetegleequest changed
the state, we need to be resistant to errors. That issetie contains the ratio
of Ni transition t0 Niseen- IN this way, if we accidentally choose the wrong state-
changing request once, but then, later, make that requasy timaes without

changing the state, we are less likely to choose it as a shatieging request.

4.3.3 Collapsing Similar States

Running the state detection algorithm on a series of reguesl responses will
tell us when the state has changed. At this point, we consialen state unique. This
initial state assignment, though, is not optimal, becawss & we encounter a state
that we have seen in the past, we are marking it as new. Forpg&am the case of

a sequence of login and logout actions, we are actually ngpbetween two states,

101

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

instead of entering a new state at every login/logout. Tioeeewe need to minimize
the number of different states and collapse states thattually the same.

The problem of state allocation can be seen as a graph+eglproblem on a non-
planar graph [75]. Let each state be a node in the gfaph.et two nodesa andb
be connected by an edge (meaning that the states cannot bantieg if either of the

following conditions holds:

1. If a requesiR was made when the web application was in statesxdb and
results in pages in different clusters. The intuition ig tha states cannot be the

same if we make an identical request in each state yet reaeifferent response.

2. The two statea andb have no pages in common. The idea is to err on the
conservative side, thus we require that two states shargelgfore collapsing

the states into one.

After adding the edges to the graph by following the previnuss,G is colored.
States assigned the same color are considered the same state

To color the nodes o6, we employ a custom greedy algorithm. Every node has
a unique identi er, which is the incremental number of thatstas we see it in the
request-response list. The nodes are ordered by idenéret,we assign the color to
each node in a sequential way, using the highest color &lailae., not used by its

neighbors), or a new color if none is available.

102

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

This way of coloring the nodes works very well for state aditian because it takes
into account the temporal locality of states: In particulee attempt to assign the
highest available color because it is more likely for a statee the same as a recently
seen state rather than one seen at the beginning of crawling.

There is one nal rule that we need to add after the graph isredl. This rules
captures an observation about transitioning betweensstHta requestR, transitions
the web application from stage to stateb, yet, later when the web application is in
statea,, R transitions the web application to statehena; anda, cannot be the same
state. Therefore, we add an edge frano a, and redo the graph coloring.

We continue enforcing this rule until no additional edgesatded. The algorithm
is guaranteed to converge because only new edges are adnledyastep, and no edges
are ever removed.

At the end of the iteration, the graph coloring output wiltetenine the nal state
allocation—all nodes with the same color represent the sstaie (even if seen at

different stages during the web application crawling pss3e

4.3.4 Navigating

Typical black-box web vulnerability scanners make conenrHTTP requests to
a web application to increase performance. However, as we $slaown, an HTTP

request can in uence the web application's state, and, i ¢ase, all other requests

103

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

would occur in the new state. Also, some actions require di+stgp, sequential pro-
cess, such as adding items to a shopping cart before punghth&m. Finally, a user
of the web application does not browse a web applicationigighrallel fashion, thus,
developers assume that the users will browse sequentially.

Our scanner navigates a web application by mimicking a usewvging the web
application sequentially. Browsing sequentially not oallows us to follow the de-
veloper's intended path through the web application, baetables us to deteathich
requests changed the web application’'s state.

Thus, a state-aware crawler must navigate the applicatiquentially. No concur-
rent requests are made, and only anchors and forms predéet lgwst visited page are
used to determine the next request. In the case of a page avihitgoing links we go
back to the initial page.

Whenever the latest page does not contain unvisited lihkesgitawler will choose
a path from the current page towards another page alreadytisa&scontains links that
have not yet been visited. If there is no path from the cunpage to anywhere, we go
back to the initial page. The criteria for choosing this pathased on the following

intuitions:

We want to explore as much of the current state as possibbeebehanging the

state, therefore we select links that are less likely to eaustate transition.

104

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

1 def fuzz_state _changing(fuzz_request):
2 make_request(fuzz_request)

3 if state_has_changed():

4 if state is_reversible():

5 make_requests_to_revert_state()

6 if not back in_previous_state():
7 reset_and_put_in_previous_state()
8 else :

9 reset_and_put_in_previous_state()

Listing 4.1: Psuedocode for fuzzing state-changing relques

When going from the current page to a page with an unvisitéd Wwe will repeat
requests. Therefore, we should choose a path that contakssthat we have

visited infrequently. This give us more information abdw turrent state.

The exact algorithm we employ is Dijkstra Shortest Path Athom [43] with cus-
tom edge length. This edge length increases with the nunflienes we have previ-
ously visited that link. Finally, the edge length increasés how likely the link is to

cause a state change.

4.4 State-Aware Fuzzing

After we crawl the web application, our system has infereedmuch as possible,
the web application's state machine. We use the state maahfiormation, along with
the list of request-responses made by the crawler, to dstata-aware fuzzing of the

web application, looking for security vulnerabilities.

105

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

To fuzz the application in a state-aware manner, we needdiliydo reset the web
application to the initial state (the state when we startesvting). We do not use this
ability when crawling, only when fuzzing. It is necessarydset the application when
we are fuzzing an irreversible state-changing requesndJtbie reset functionality, we
are able to recover from these irreversible state changes.

Adding the ability to reset the web application does not btba black-box model
of the web application. Resetting requires no knowledgénefweb application, and
can be easily performed by running the web application intai@i machine.

Our state-aware fuzzing starts by resetting the web agpit#o the initial state.
Then we go through the requests that the crawler made ngjavith the initial request.
If the request does not change the state, then we fuzz thestgs a typical black-
box scanner. However, if the request is state-changingpW@f the algorithm shown
in Listing 4.1. The algorithm is simple: We make the requesiy if the state has
changed, traverse the inferred state machine to nd a sefiesquests to transition
the web application to the previous state. If this does nistear does not work, then
we reset the web application to the initial state, and malkihalprevious requests that
the crawler made. This ensures that the web application tisarproper state before
continuing to fuzz.

Our state-aware fuzzing approach can asgfuzzing component. In our imple-

mentation, we used the fuzzing plugins of an open-sourcenscaw3af [117]. The

106

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Application Description Version Lines of Code
Gallery Photo hosting. 3.0.2 26,622
PhpBB v2 Discussion forum. 2.04 16,034
PhpBB v3 Discussion forum. 3.0.10 110,186
SCARF Stanford conference and research forum. 2007-02-27 98 7
Vanilla Forums Discussion forum. 2.0.17.10 43,880
WackoPicko v2 Intentionally vulnerable web application. 02 900
WordPress v2 Blogging platform. 2.0 17,995
WordPress v3 Blogging platform. 3.2.1 71,698

Table 4.1: Applications that we ran the crawlers against &asare vulnerabilities
discovered and code coverage.

fuzzing plugins take an HTTP request and generate vargmtonthat request look-
ing for different vulnerabilities. Our state-aware fuzzimakes those requests while

checking that the state does not unintentionally change.

4.5 Evaluation

As shown in Chapter 3, fairly evaluating black-box web vui®lity scanners is
dif cult. The most important, at least to end users, metoc €omparing black-box
web vulnerability scanners is true vulnerabilities diss@d. Comparing two scanners
that discover different vulnerabilities is nearly impdssi

There are two other metrics that we use to evaluate blackamix vulnerability

scanners:

False Positives. The number of spurious vulnerabilitied thblack-box web

vulnerability scanner reports. This measures the accuwhtye scanner. False

107

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

positives are a serious problem for the end user of the scarihthe false pos-
itives are high, the user must manually inspect each vubildsareported to
determine the validity. This requires a security-conssiager to evaluate the
reports. Moreover, false positives erode the user's trughie tool and make the

user less likely to use it in the future.

Code Coverage. The percentage of the web application'sttad¢he black-box
web vulnerability scanner executes while it crawls and észthe application.
This measures how effective the scanner is in exercisinfutinetionality of the
web application. Moreover, code coverage is an excelleritientor another
reason: A black-box web vulnerability scanner, by natuaanot nd a vulnera-
bility along a code path that it does not execute. Therefyneater code coverage
means that a scanner has the potential to discover morerabitiges. Note that
this is orthogonal to fuzzing capability: A fuzzer—no mattew effective—wiill

never be able to discover a vulnerability on a code path thiktes not execute.

We use both the metrics previously described in our evalnatiowever, our main
focus is on code coverage. This is because a scanner wittegoeale coverage will
be able to discover more vulnerabilities in the web applcat

However, code coverage is not a perfect metric. Evaluatimgaode coverage per-

centage numbers can be misleading. Ten percent code cewsrag application could

108

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

be horrible or excellent depending on how much functiopalie application exposes.
Some code may be intended only for installation, may be amafiministrators, or is
simply dead code and cannot be executed. Therefore, camgpestde coverage nor-

malized to a baseline is more informative, and we use thisirregaluation.

4.5.1 Experiments

We evaluated our approach by running our state-aware-scaiong with three
other vulnerability scanners against eight web applicatioThese web applications
range in size, complexity, and functionality. In the restlo$ section, we describe the
web applications, the black-box web vulnerability scaspand the methodology we

used to validate our approach.

Web Applications

Table 4.1 provides an overview of the web applications usitd avshort descrip-
tion, a version number, and lines of executable PHP codeafdr application. Because
our approach assumes that the web application's state ekady via requests from
the user, we made slight code modi cations to three web appbns to reduce the
in uence of external, non-user driven, forces, such as time

This section describes the web applications along with timetfonality against

which we ran the black-box web vulnerability scanner.

109

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Gallery is an open-source photo hosting application. The admatmtrcan upload
photos and organize them into albums. Guests can then vidw@nment on the up-
loaded photos. Gallery has AJAX functionality but grackfulegrades (is fully func-
tional) without JavaScript. No modi cations were made te #pplication.

PhpBB v2 is an open-source forum software. It allows registeredsuseiperform
many actions such as create new threads, comment on thagadsessage other users.
Version 2 is notorious for the amount of security vulneriéies it contains [14], and we
included it for this reason. We modi ed it to remove the “radg online” section on
pages, because this section is based on time.

PhpBB v3 is the latest version of the popular open-source forum sofw It is a
complete rewrite from Version 2, but retains much of the shmetionality. Similar to
PhpBB v2, we removed the “recently online” section, becatisdime-based.

SCAREF, the Stanford Conference And Research Forum, is an opegesoanference
management system. The administrator can upload papeatsegistered users can
comment on the uploaded papers. We included this applichgcause it was used by
previous research [12, 36, 88,89]. No modi cations were enedthis application.
Vanilla Forums is an open-source forum software similar in functionalayRhpBB.
Registered users can create new threads, comment on thbesdksnark interesting
threads, and send a message to another user. Vanilla Fosuumgque in our test

set in that it uses the path to pass parameters in a URL, whaitkather applica-

110

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

tions pass parameters using the query part of the URL. Ftanne, a speci ¢ user's
pro le is GET /profile/scannerl , While a discussion thread is locatedGET
/discussion/1/how-to-scan . Vanilla Forums also makes extensive use of
AJAX, and it does not gracefully degrade. For instance, ddvaScript disabled, post-
ing a comment returns a JSON object that contains the suocdasure of the com-
ment posting, instead of an HTML response. We modi ed VaniHbrums by setting
an XSRF token that it used to a constant value.

WackoPicko v2is an open-source intentionally vulnerable web applicesihich was
originally created to evaluate many black-box web vulngitglscanners, and was de-
scribed in Chapter 3. A registered user can upload pictemament on other user's
pictures, and purchase another user's picture. Versiomgagts minor tweaks from
the original paper, but no additional functionality.

WordPress v2is an open-source blogging platform. An administrator caate blog
posts, where guests can leave comments. No changes werdarthdeapplication.
WordPress v3is an up-to-date version of the open-source blogging ptatfdust like
the previous version, administrators can create blog peosite a guest can comment

on blog posts. No changes were made to this application.

111

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Scanner Description Language Version

wget GNU command-line websiteC 1.12
downloader.

w3af Web Application Attack and Au- Python 1.0-stable
dit Framework.

skip sh Open-source, high-performanceC 2.03b
vulnerability scanner.

state-aware-scanner Our state-aware vulnerabilRython 1.0
scanner.

Table 4.2: Black-box web vulnerability scanners that we parad.
Black-Box Web Vulnerability Scanners

This section describes the black-box web vulnerabilityseas that were compared
against our approach, along with the con guration or sgtithat were used. Table 4.2
contains a short description of each scanner, the scampregsamming language, and
the version number.
wgetis a free and open-source application that is used to downlea from a web
application. While not a vulnerability scanner, wget is avder that will make all
possibleGETrequests it can nd. Thus, it provides an excellent basdbieeause vul-
nerability scanners makeOSTrequests as well aSETrequests and should discover
more of the application than wget.

wget is launched with the following options: recursive, adwad everything, and

ignore robots.txt.

112

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

w3af is an open-source black-box web vulnerability scanner whizs many fuzzing
modules. We enabled the blindSqli, eval, localFileIncludgCommanding, remote-
FileInclude, sqli, and xss fuzzing plugins.
skip sh is an open-source black-box web vulnerability scanner whosus is on high
speed and high performance. Skip sh epitomizes the “shotgpproach, and boasts
about making more than 2,000 requests per second to a welzcatjgsi on a LAN.
Skip sh also attempts to guess, via a dictionary or brutedo directory names. We
disabled this behavior to be fair to the other scanners,useceve do not want to test
the ability to guess a hidden directory, but how a scannevlsra web application.
state-aware-scanneis our state-aware black-box vulnerability scanner. WeHitse-
IUnit [55] to issue the HTTP requests and render the HTML oeses. After crawl-
ing and building the state-graph, we utilize the fuzzinggais from w3af to generate
fuzzing requests. Thus, any improvement in code coveragarafrawler over w3af is
due to our state-aware crawling, since the fuzzing compsrae identical.
Scanner Con guration

The following describes the exact settings that were usedrt@ach of the evalu-

ated scanners.

wget is run in the following way:
wget -rp -w 0 --waitretry=0 -nd

--delete-after --execute robots=off

113

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

w3af settings:

misc-settings

set maxThreads O

back

plugins

discovery webSpider

audit blindSqli, eval,
localFilelnclude, osCommanding,

remoteFilelnclude, sqgli, xss

skip sh is run in the following way:

skipfish -u -LV -W /dev/null -m 10

Methodology

We ran each black-box web vulnerability scanner againsstngdt, yet identical,
copy of each web application. We ran all tests on our localad.02].

Gallery, WordPress v2, and WordPress v3 do not require asuatto interact with
the website, thus each scanner is simply told to scan thepestation.

For the remaining applications (PhpBB v2, PhpBB v3, SCAR&niNa Forums,
and WackoPicko v2), it is dif cult to fairly determine how rob information to give

the scanners. Our approach only requires a username/padawthe application, and

114

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

by its nature will discover the requests that log the user aut recover from them.
However, other scanners do not have this capability.

Thus, it is reasonable to test all scanners with the saméedéugormation that we
give our scanner. However, the other scanners lack theyatmliprovide a username
and password. Therefore, we did the next best thing: Foetapplications that require
a user account, we log into the application and save the eotki We then instruct
the scanner to use this cookie le while scanning the webiagpbn.

While we could do more for the scanners, like preventing ttiemm issuing the
logout request for each application, we believe that our@gogh strikes a fair compro-
mise and allows each scanner to decide how to crawl the siweRting the scanners
from logging out of the application also limits the amountloé application they will

see, as they will never see the web application from a guestspective.

45.2 Results

Table 4.3 shows the results of each of the black-box web valiléty scanners
against each web application. The column “% over Baselirsgldys the percentage of
code coverage improvement of the scanner against the wgelim@ while the column
“Vulnerabilities” shows total number of reported vulneitdies, true positives, unique

true positives among the scanners, and false positives.

115

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

Scanner Application % over Baseling Vulnerabilities

Reported True Unique False
state-aware-scanner Gallery 16.20% 0 0 0 0
w3af Gallery 15.77% 3 0 0 3
skip sh Gallery 10.96% 0 0 0 0
wget Gallery 0%
state-aware-scanner PhpBB v2 38.34% 4 3 1 1
skip sh PhpBB v2 5.10% 3 2 0 1
w3af PhpBB v2 1.04% 5 1 0 4
wget PhpBB v2 0%
state-aware-scanner ~ PhpBB v3 115.45% 0 0 0 0
skip sh PhpBB v3 60.21% 2 0 0 2
w3af PhpBB v3 16.16% 0 0 0 0
wget PhpBB v3 0%
state-aware-scanner SCARF 67.03% 1 1 1 0
skip sh SCARF 55.66% 0 0 0 0
w3af SCARF 21.55% 0 0 0 0
wget SCARF 0%
state-aware-scanner ~ Vanilla Forums 30.89% 0 0 0 0
w3af Vanilla Forums 1.06% 0 0 0 0
wget Vanilla Forums 0%
skip sh Vanilla Forums -2.32% 17 15 2 2
state-aware-scanner ~ WackoPicko v2 241.86% 5 5 1 0
skip sh WackoPicko v2 194.77% 4 3 1 1
w3af WackoPicko v2 101.15% 5 5 1 0
wget WackoPicko v2 0%
state-aware-scanner ~ WordPress v2 14.49% 0 0 0 0
w3af WordPress v2 12.49% 0 0 0
wget WordPress v2 0%
skip sh WordPress v2 -18.34% 1 0 0 1
state-aware-scanner ~ WordPress v3 9.84% 0 0 0 0
w3af WordPress v3 9.23% 3 0 0 3
skip sh WordPress v3 3.89% 1 0 0 1
wget WordPress v3 0%

Table 4.3: Results of each of the black-box web vulneratsiitanners against each ap-
plication. The table is sorted by the percent increase ie coderage over the baseline
scanner, wget.

The prototype implementation of our state-aware-scanaétrtie best code cover-
age for every application. This veri es the validity of oulgarithm: Understanding
state is necessary to better exercise a web application.

Figure 4.6 visually displays the code coverage percentongment over wget. The
most important thing to take from these results is the impnoent state-aware-scanner

has over w3af. Because we use the fuzzing component of wakrly difference

116

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

250%
state-aware-scanner—
230% w3af |

210% |- skip sh

190% >
120%f —

100% [
80% [
60%

40%
20% - H
0% rﬁ&s};;g o

i U SV
e//@g/ /70'98 /708@ Cq N a,,%p
O,Z//bs
Figure 4.6: Visual representation of the percentage isered code coverage over the
baseline scanner, wget. Important to note is the gain ounmscastate-aware-scanner,
has over w3af, because the only difference is our stateeaw@wling. They-axis
range is broken to reduce the distortion of the WackoPickoegilts.

Percentage Improvement Over wget

is in our state-aware crawling. The results show that thisgstate-aware-scanner an
increase in code coverage from as little as half a percemt@o/1 percent.

Our crawler discovered three unique vulnerabilities (eudtbilities that no other
scanner found), one each in PhpBB v2, SCARF, and WackoPi2koThe SCARF
vulnerability is simply a XSS injection on the comment form3af logged itself out
before fuzzing the comment page. skip sh led the vulnemphge under “Response
varies randomly, skipping checks.” However, the contetihizfpage does not vary ran-
domly, it varies because skip sh is altering it. Tm@ndomcategorization also prevents

skip sh from detecting the simple XSS vulnerability on Waékcko v2's guestbook.

117

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

This result shows that a scanner needs to understand theppktetion's internal state
to properly decidevhya page's content is changing.

Skip sh was able to discover 15 vulnerabilities in Vanillafems. This is impres-
sive, however, 14 stem from a XSS injection via the referedee on an error page.
Thus, even though these 14 vulnerabilities are on diffepagies, it is the same root
cause.

Surprisingly, our scanner produced less false positiveaswBaf. All of w3af's false
positives were due to faulty timing detection of SQL injeatiand OS commanding.
We believe that using HtmlUnit prevented our scanner frotecteng these spurious
vulnerabilities, even though we use the same fuzzing corpioes w3af.

Finally, our approach inferred the state machines of théuatad applications.
These state machines are very complex in the large appl=atiThis complexity is
because modern, large, application have many actions whatify the state. For
instance, in WackoPicko v2, a user can log in, add items to dat, comment on
pictures, delete items from their cart, log out of the agilan, register as a new user,
comment as this new user, upload a picture, and purchass.it&tof these actions
interact to form a complex state machine. The state machinseganner inferred cap-
tures this complex series of state changes. The inferredk&®acko v2 state machine

is presented in Figure 4.7.

118

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

4.6 Limitations

Although dynamic page generation via JavaScript is suppdoly our crawler as
allowed by the HtmlUnit framework [55], proper AJAX suppdstnot implemented.
This means that our prototype executes JavaScript whenaihe Ipads, but does not
execute AJAX calls when clicking on links.

Nevertheless, our approach could be extended to handle Adguésts. In fact, any
interaction with the web application always contains a esfjand response, however
the content of the response is no longer an HTML page. Thus;outl extend our
notion of a “page” to typical response content of AJAX cadlsch as JSON or XML.
Another way to handle AJAX would be to follow a Crawljax [9}@oach and covert
the dynamic AJAX calls into static pages.

Another limitation of our approach is that our scanner carbeused against a
web application being accessed by other users (i.e., aqgowbh application), because
the other users may in uence the state of the applicatiog.,(@dd a comment on a

guestbook) and confuse our state change detection algorith

4.7 Conclusion

We have described a novel approach to inferring, as muchsssiype, a web appli-

cation's internal state machine. We leveraged the stat&imedo drive the state-aware

119

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

fuzzing of web applications. Using this approach, our ceavig able to crawl—and
thus fuzz—more of the web application than a classical stgtestic crawler. We be-
lieve our approach to detecting state change by differemcesitput for an identical
response is valid and should be adopted by all black-bos tiwait wish to understand

the web application’s internal state machine.

120

Chapter 4. A State-Aware Black-Box Web Vulnerability Scann

oSt o e
Sr——

@

Figure 4.7: State machine that state-aware-scannereaaféor WWackoPicko v2.

121

Chapter 5

Discovering and Mitigating Execution
After Redirect Vulnerabilities

Now, we turn our attention to the study of a novel class of watliaation vulner-
abilities called Execution After Redirect. In this chaptee describe the vulnerability
class and create a tool to statically nd Execution After Rect vulnerabilities in Ruby

on Rails web applications.

An increasing number of services are being offered on-kwe.example, banking,
shopping, socializing, reading the news, and enjoyingr&aitenent are all available
on the web. The increasing amount of sensitive data storeadtyapplications has
attracted the attention of cyber-criminals, who break Bystems to steal valuable in-
formation such as passwords, credit card numbers, so@atisenumbers, and bank

account credentials.

122

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

Attackers use a variety of vulnerabilities to exploit welpkgations. In 2008, Al-
bert Gonzalez was accused and later convicted of stealingikion credit and debit
cards from major corporate retailers, by writing SQL injectattacks [74, 109]. An-
other common vulnerability, cross-site scripting (XSS)the second highest-ranked
entry on the OWASP top ten security risks for web applicatjdrehind injection at-
tacks like SQL injection [107]. Thus, SQL injection and XS&va received a large
amount of attention by the security community. Other populab application vul-
nerabilities include cross site request forgery (XSRF),[HI TP parameter pollution

(HPP) [10, 30], HTTP response splitting [85], and clickjexk[9, 63].

In this chapter, we present an in-depth study of a littlevimoeal-world web applica-
tion logic aw; one we are calling Execution After RediredAR). An EAR occurs
because of a developer's misunderstanding of how the welcappn framework op-
erates. In the normal work ow of a web application, a userdsea request to the web
application. The web application receives this requestppms some server-side pro-
cessing, and returns an HTTP response. Part of the HTTPrresjgan be a noti cation
that the client (a web browser) should look elsewhere for¢lqeested resource. In this
case, the web application sets the HTTP response codélp302, 303, or 307,
and adds &ocation header [51]. These response codes instruct the browsesko lo

for the resource originally requested at a new URL speci gdhle web application

123

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

in the HTTPLocation header [50]. This process is known as redirectidhe web
application redirects the user to another resource.

Intuitively, one assumes that a redirect should end exacuafithe server side code;
the reason is that the browser immediately sends a requeghdanew location as
soon as the redirection response is received, and it doeproogss the rest of the
web application's output. Some web frameworks, howevenaldchalt execution on a
redirect. This can lead to EAR vulnerabilities.

Speci cally, an EAR can be introduced when a web applicatieneloper writes
code that issues an HTTP redirect under the assumptiorhthaedirect will automat-
ically halt execution of the web application. Depending be framework, execution
can continue after the call to the redirect function, pagiyt violating the security
properties of the web application.

We de ne halt-on-redirectas a web framework behavior where server-side code
execution halts on a redirect, thus preventing EARs. Uunfately, some languages
make halt-on-redirect dif cult to implement, for instandgy not supporting goto -
type statement. Therefore, web frameworks differ in suppghalt-on-redirect behav-
ior. This difference in redirect method semantics can iaseghe developer's confusion

when developing applications in different frameworks.

LIn this chapter, we consider only HTTP server-side redimectOther forms of redirection, executed
on the client, exist such as JavaScript redirect or HTML mefieesh.

124

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

In this chapter, we present a comprehensive study of Exaciditer Redirect vul-
nerabilities: we provide an overview of EARs and classifyRsAInto different types.
We also analyze nine web application frameworks' suscéjilto EARs, specifying
their redirect semantics, as well as detailing what exatthkes them vulnerable to
EARs. Moreover, we develop a novel static analysis algorith detect EARS, which
we implemented in an open-source tool to analyze Ruby orsRab applications.
Finally, we discovered hundreds of vulnerabilities in osenirce Ruby on Rails web
applications, with a very low false positive rate.

In summary, this chapter provides the following contribog:

We categorize EARs and provide an analysis of nine framesvstksceptibility

to various types of EARs.

We discuss the results from the EAR challenge containedmithr 2010 Inter-

national Capture the Flag Competition.

We present an algorithm to statically detect EARs in Ruby aitsRapplications.

We run our white-box tool on 18,127 open-source Ruby on Rmpldications,

which found 3,944 EARS.

125

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

5.1 Overview of EARS

An Execution After Redirect vulnerability is a logic aw in@b applications that
results from a developer's misunderstanding of the sermsuwofi redirection. Very of-
ten this misunderstanding is caused by the web framewordk Img¢he developér In
particular, developers typically assume that the web apptin will halt after calling a
function of the web framework that performs a redirect. @artveb frameworks, how-
ever, do not halt execution on a redirect, and instead, ¢gedlthe code that follows
the redirect operation. The web browser perpetuates tligmderstanding, as it obedi-
ently performs the redirect, thus falsely indicating theg tode is correct. As a result,
when the developer tests the web application using the lempwse observed behavior
seems in line with the intentions of the developer, and, equsntly, the application is
assumed to be correct.

Note that an EAR is not a code injection vulnerability; araeler cannot execute
arbitrary code, only code already present after the redirdn EAR is also different
from XSS and SQL injection vulnerabilities; it is not an inpalidation aw, but rather
a mismatch between the developer's intentions and the laotpeementation.

As an example, consider the EAR vulnerability in the Ruby @ilskcode shown

in Listing 5.1. The code appears to redirect the current tséf’ if she is not an

2 This misunderstanding was con rmed by a developer who rnedpd to us when we noti ed him of
an EAR in his code, who said, “l wasn't aware at all of this gesb because | thought ruby on rails will
always end any execution after a redirect.” This examplastibat developers do not always understand
how their web framework handles redirects.

126

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

1 class TopicsController < ApplicationController
2 def update

3 @topic = Topic.find(params][:id])

4 if not current_user.is_admin?

5 redirect_to("/")

6 end

7 @topic.update_attributes(params:topic])

8 flash[:notice] = "Topic updated!"

9 end

10 end

Listing 5.1: Example of an Execution After Redirect vulrahdy in Ruby on Rails.

administrator (Line 5), and, if she is an administrat@topic will be updated with
the parameters sent by the user in fa@ams variable (Line 7). The code does not
execute in this way, because Ruby on Rails does not supdouiaedirect behavior.
Thus,anyuser, not only the administrator, can update the topicatiiog the intended
authorization and compromising the security of the webiappbn.

The simple way to x Listing 5.1 is to add eeturn after theredirect _to
call on Line 5. This will cause thapdate method to terminate after the redirect,
thus, no additional code will be executed. Adding a retutieradll redirects is a
good best practice, however, it is insuf cient to preventteARs. Listing 5.2 depicts
an example of an EAR that cannot be prevented by adding anrefter a redirect.
Here, theredirect _to on Line 4 is followed by aeturn , so there is no EAR
in theensure _admin method. Howeverensure _admin is called bydelete on
Line 10, which callgedirect _to on Line 4. Thereturn call on Line 5 will re-

turn the control ow back into thalelete method, and execution will continue on

127

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

Line 11. Thus, the@user object will still be deleted on Line 12, regardless of whethe
the current _user is an administrator or not, introducing an EAR. Unfortuhate
in some frameworks, the developer cannot simply &sé instead of return to halt
execution after a redirect because the web applicationpsagd to handle multiple
requests. Therefore, callirexit would kill the web application and prevent further

requests.

5.1.1 EAR History

Execution After Redirect vulnerabilities are not a new ogoence; we found 17
Common Vulnerabilities and Exposures (CVE) EAR vulneiigibd dating back to
2007. These CVE entries were dif cult to nd because EARs a have a separate
vulnerability type; the EAR CVE vulnerabilities we fouhaere spread across different
Common Weakness Enumeration Speci cation (CWE) typesputrivalidation,” "Au-
thentication Issues,” “Design Error,” “Credentials Marawent,” “Code Injection,” and
“Permissions, Privileges, and Access Control.” Theseemahilities types vary greatly,

and this indicates that EARs are not well understood by thergg community.

3The interested reader is directed to the following EARs: €(09-2168, CVE-2009-1936, CVE-
2008-6966, CVE-2008-6965, CVE-2008-0350, CVE-2007-6652E-2007-6550, CVE-2007-6414,
CVE-2007-5578, CVE-2007-4932, CVE-2007-4240, CVE-2@988, CVE-2007-2776, CVE-2007-
2775, CVE-2007-2713, CVE-2007-2372, and CVE-2007-2003.

128

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

1 class UsersController < ApplicationController
2 def ensure_admin

3 if not current_user.is_admin?
4 redirect_to("/")

5 return

6 end

7 end

8

9 def delete

10 ensure_admin()

11 @user = User.find(paramsl[:id])
12 @user.delete()

13 flash[:notice] = "User Deleted"
14 end

15 end

Listing 5.2: Example of a complex Execution After Redireatnerability in Ruby on
Rails.

5.1.2 EARs as Logic Flaws

While logic aws are typically thought of as being unique tespeci ¢ web ap-
plication, we believe EARs are logic aws, even though theg aystemic to many
web applications. Because an EAR is the result of the deeetomisunderstanding of
the web application framework, there is an error in her logibe intuition is that the
redirect is an indication of the developer's intent for englserver-side processing. A
redirect can be thought of agyato - the developer, in essence, wishes to tell the user
to look somewhere else. However, it does not act geta , because the server-side
control ow of the application is not terminated, even thbuthat is how it appears

from the perspective of the client.

129

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

There are almost no valid reasons to have code executedaaféglirect method.
The few exceptions are: performing cleanup actions, suaticaéng open les, and
starting long-running processes, such as encoding a videdn the former case, the
cleanup code can be executed before a redirect, and in tiee ¢aise, long-running
processes can be started asynchronously, alleviatingetbe to have code executed
after a redirect.

Because there is no reason to execute code after a redireaanvinfer that the

presence of code executed after a redirect is a logic aw.

5.1.3 Types of EARs

Execution After Redirect logic aws can be of two types: kgmior vulnerable.
A benign EAR is one in which no security properties of the aggion are violated,
even though additional, unintended, code is executed aftedirect. For example, the
code executed after the redirect could set a local varialdestatic string, and the local
variable is not used or stored. Although no security progerre violated, a benign
EAR may indicate that a developer misunderstood the redegmantics of the web
framework, posing the risk that code will, in the future, lwled after the redirect,
elevating the EAR from benign to vulnerable.

A vulnerable EAR occurs when the code executed after theeeidviolates the

security properties of the web application. More specigain a vulnerable EAR

130

1
2
3
4
5
6

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

$current_user = get_current_user();
if (!$current_user->is_admin())

{
}
e

header ("Location: /);

cho "Sensitive Information";

Listing 5.3: Example of an information leakage ExecutioteARedirect vulnerability
in PHP. If thecurrent _user is not an administrator, the PHieader function will
be called, redirecting the user to “/”. However, the semsitnformation will still be
returned in the output, thus leaking information. The x asdall theexit function
after theheader call.

the code executed after the redirect allows unauthorizedl nation to the state of the
web application (typically the database), and/or causdsalge (reads and returns to the
browser) of data to an unauthorized user. In the former eage 6ee Listing 5.1), the
integrity of the web application is compromised, while ie tatter case, the con den-
tiality of the web application is violated (e.g., see Ligtif.3). Thus, every vulnerable
EAR is an instance of broken/insuf cient access controkszause the redirect call is
an indication that the user who made the request is not atldavaccess the requested
resource.

EAR vulnerabilities can be silent. In a silent EAR, the exemuof code does not
produce any output. This lack of information makes silentRSAdif cult to detect
via a black-box approach, while information leakage EARs eaisier to detect with
black-box tools. Listings 5.1 and 5.2 are examples of si&kiRs, and Listing 5.3 is an

example of an information leakage EAR.

131

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

5.1.4 Framework Analysis

Web application frameworks vary on supporting halt-oninestt behavior. There-
fore, different frameworks provide protection againsfatint kinds of EAR vulnera-
bilities. The differing semantics of redirects increades ¢onfusion of developers. A
developer we contacted said, “I didn't realize that [RubyRails'] redirectto was like
PHP's header redirect and continued to run code.” Thus, denstanding of the web
framework's redirect semantics is essential to produceecbrEAR-free, code.

We analyzed nine of the most popular web frameworks to seetheyvdiffer with
respect to their built-in redirect functions. The nine femorks were chosen based on
their StackOver ow activity, and include one framework fach of the Ruby, Groovy,
and Python languages, three frameworks for the PHP langaagdramework that can
be applied to both C# and Visual Basic, and two framework#ifeldava language [22].
While the frameworks selected for analysis are not exhaeistve believe they are
diverse and popular enough to be representative of reddwseage.

To analyze the frameworks, we created nearly identicalepf a simple web
service in each of the nine web frameworks. This web servioeiged access to four
pages within the web application. The rst was the root pafewhich simply linked
to the other three pages. The second was the redirect paggiyéct”, which was used
to test proper redirect behavior. The third was the EAR p&dgey”, which called the

framework's redirect function, appended a message to allmgegarding the request,

132

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

and nally attempted to return a rendered response to thevdgn The last page was
the log page, “/log”, which simply displayed the contentsha log le.

Using this design for the web application allowed us to chieckntegrity viola-
tions, represented by the appended log message, and caialitgrviolations, repre-
sented by output sent after the HTTP redirect response vetgresting the EAR page.
We approached the implementation of this web applicatiaaich framework as many
developers new to that framework would. That is, whenevesite, we followed the
recommended tutorials and coding practices required td luiveb application in the
framework.

A brief background on the model-view-controller (MVC) sefire architecture is
necessary to follow our analysis, as each framework andlyz¢éhe MVC pattern. The
MVC architecture supports the separation of the persigemage (model), the user
interface (view), and the control ow (controller) [116]. &fe precisely, the models
interact with the database, the views specify the outpuétiarn to the client, and the
controllers are the glue that puts everything together.cimeroller must handle HTTP
requests, fetch or update models, and nally return a viearasl TTP response. When
following the MVC paradigm, a controller is responsible f&suing a redirect call.

The following sections describe our analysis of each fraorklw susceptibility to
EAR vulnerabilities based on their redirect functions' @sel documentation. We de-

veloped the test application in the latest stable versiosach framework available at

133

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

the time. The version numbers are listed adjacent to thedinaork name in the section

headers.

Ruby on Rails 3.0.5

Ruby on Rails, commonly referred to as Rails, is a popular aggilication frame-
work. Unfortunately, Rails is susceptible to EAR vulnetdigis. Rails provides the
redirect _to function, which prepares the controller for sending the RT&direct.
However, the redirect is not actually sent at this point, ende continues to execute
following the call toredirect _to . In Rails, there is no mechanism to ensure that
code halts following a redirect, thus if exit is called, a el@per must return from the
controller's entry function without executing additiorade.

As previously mentioned in Section 5.1, the Rubyt command cannot be used
to halt the execution of a controller after a redirect. Thifor two reasons: the rstis
thatredirect _to does not immediately send output when it is called, thesif
is called, the user will never see the redirect. The secoadoreis that Rails web
applications are long-running processes that handle pheliticoming requests, unlike
PHP, which typically spawns a new instance for each reqiéstrefore, callingxit
to halt execution is not feasible, as it will terminate thelfapplication, preventing it

from handling further requests.

134

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

On a positive note, information leakage EARs are impossiblRails web ap-
plications because a controller can either perform a retlic@ render a response
(view) to the user. Any call toender after a redirect will result in Rails throwing a
DoubleRenderError . This exception is thrown in all possible combinations:-ren
der after a redirect, render after a render, redirect aftemder, and redirect after a

redirect.

Grails 1.3.7

Grails is a framework written in Groovy, which was modelet@afhe Ruby on Rails
framework. Thus, Grails behaves in a manner nearly iddrttcRails with respect to
redirects. Speci cally, code will continue to execute @lling a call to the redirect
function, and, therefore, the developer must take precasitio avoid creating an EAR
vulnerability. Unfortunately, as of this writing, nowherethe Grails documentation on
redirects does it mention that code will continue to exeéoitewing a redirect [130].

Unlike Ruby on Rails, the behavior of Grails is somewhat j@eslictable when it
comes to the order of view rendering and/or calls to rediréotexplain, we will say
that to “render” means to output a view, and to “redirect” me#o call the redirect
function. As previously mentioned in Section 5.1.4, in BRadnly one render or one
redirect may be called in a controllerPoubleRenderError is thrown in the case

of multiple calls. In Grails, however, the only redirect eption,CannotRedirect-

135

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

Exception , occurs when a redirect is called following another rediren cases
where multiple calls to render are made, the nal render esahly one that is sent
to the browser. More importantly, in cases where both ret@ed render are called,
regardless of their order, the redirect is actually senihéoldrowser and the render call
is simply ignored. Due to this behavior of Grails, it is notrverable to an information
leakage EAR. However, like Rails, it is still vulnerable itest EARS that violate the

integrity of the application.

Django 1.2.5

Django is a Python web application framework that differssrhandling of redi-
rects compared to the other frameworks (save for ASP.NET M¥Rather than call-
ing functions to render or perform the redirect, Django rezpithe developer to re-
turn anHttpResponse object from each controller. Django’'s documentation makes
it clear that calling Django'sedirect function merely returns a subclass of the
HttpResponse object. Thus, there is no reason for the developer to expeatdde
to halt when callingredirect . The actual HTTP redirect is sent to the browser
only if this object is also returned from the controller'signpoint, thereby removing
the possibility of further code execution [45]. Becausedbetroller's entry point can
only return a singlédttpResponse object, the developer can rely completely on her

browser for testing purposes. This behavior makes Djangeimious to all EARSs.

136

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

ASP.NET MVC 3.0

ASP.NET MVC is a web application framework developed by Mguoft that adds
a Model-View-Controller paradigm on top of traditional ASET, which includes the
languages C# and Visual Basic [7]. ASP.NET MVC is similar t@amo, in that all
controllers must return afsctionResult object. In order to perform redirection, ei-
ther aRedirectResult or RedirectToRouteResult object must be returned,
which are both subclasses AttionResult . Like Django, this behavior makes

ASP.NET MVC impervious to all EARs.

Zend Framework 2.3

By default, the PHP based Zend Framework is not susceptldAR vulnerabil-
ities because its redirect methods immediately resultentéinmination of server-side
code. This default behavior is consistent in the two methusesl to perform a redirect
in the Zend Framework. The simplest method is by usingtedirect method of
the controller, however, the recommended method is to wsB&director helper
object [147].

While the default behavior is not vulnerable to EARS, the Z&namework sup-
ports disabling halt-on-redirect for both methods. Thedirect method will not
halt when the keyword argumeeakit=False is provided as part of the call. Dis-

abling halt-on-redirect when using tRedirector helper object requires calling the

137

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

methodSetEXxit(False) on theRedirector helper object prior to making the
redirect call. The latter method is particularly interegtbecause any code executed
during the request has the ability to modify the behavioreafinrects called using the
Redirector helper. Fortunately, even when using Redirector helper, the de-
veloper has the option of using a set of functions suf xedwa&ndEXxit” that always
halt-on-redirect.

When halt-on-redirect is disabled in Zend, it becomes valble to integrity vio-
lation EARs. However, the default view rendering behaviodonger occurs. Thus,
even when modifying the default behavior, information kegd& EARs will never occur

in the Zend Framework.

CakePHP 1.3.7

Similar to the Zend Framework, the CakePHP framework is atstosusceptible
to EAR vulnerabilities out of the box. By default, CakePHBiagle redirect method
immediately results in the termination of the PHP script.almanner similar to the
Zend Framework, this default behavior can be modi ed byisgtthe third argument
of redirect to False , which in turn also disables the default mechanism for view
rendering [29]. Thus CakePHP is vulnerable to EARSs in eyabit same way as the

Zend Framework.

138

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

Codelgniter 2.0.0

Unlike the Zend Framework and CakePHP, Codelgniter is a Ngnyweight PHP
framework, and thus, it does not offer much out of the box. éiheless, the framework
still provides aurl helper class that contains a redirect method [47]. Codtgsi
redirect method always exits after setting the redirectibeaa behavior that cannot
be changed. Therefore Codelgniter is impervious to EARswievelopers use only
the provided redirect function. Unfortunately, the url e class must be included
manually. As a result, there is the risk that developerswatiuse the provided redirect
function and instead introduce EARs by neglecting to ealt following a call to

header("Location:<path>")

J2EE 1.4

Java 2 Platform, Enterprise Edition (J2EE) de nes a sepdeadigm for the devel-
opment of web applications and web application framewankkava. Thus, to perform
a redirect in J2EE, or a J2EE-based framework, the devetssHttpServiet-
Response.sendRedirect . This redirect function will clear out everything previ-
ously in the output buffer, set tHeocation header to the redirect location, set the
response code to 302, and nally ushes the output bufferie browser. However,
sendRedirect does not halt execution of the servlet. Thus, only silent EARe

present in J2EE web applications, or any framework thatset@n J2EE servlets.

139

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

Struts 2.2.3

Apache Struts is an MVC framework that is built on top of thevks model pro-
vided by J2EE. Thus, Struts inherits all the potential vrabdities of the J2EE frame-
work, speci cally that silent EARs are possible but infortioa leakage EARs are
not possible. This inheritance is possible because to peréoredirect, theHttp-

ServletResponse.sendRedirect method of J2EE must be called.

5.1.5 EAR Security Challenge

Each year since 2003, we have organized and hosted a semmfyetition called
the International Capture the Flag (iCTF). The competipda dozens of teams from
various universities across the world against each othart@st of their security skills
and knowledge. While each iCTF has a primary objective, tmapetitions typically
involve secondary security challenges tangential to tiragoy objective [32].

For the 2010 edition of the iCTF, we constructed a securigllehge to observe
the familiarity of the teams to Execution After Redirect meitabilities. The challenge
involved a vulnerable EAR that violated both the con delitygand the integrity of the
web application. The con dentiality was violated when thelwmapplication's admin-
istrator view was leaked to unauthorized users followingdirect; the unauthorized
users were “correctly” redirected to an error page. Thermaidion contained in the

leaked view provided enough information to allow for an grity violation had the

140

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

database not purposefully been in a read-only state. Moperitantly, the initial data
leak provided the means to leak further information, thisahg teams to successfully
solve the challenge [21].

The crux of the EAR challenge relied on the automatic retimgaf web browsers
and other web clients, such agjet andcurl . To our surprise, many of the teams
relied only on the output produced by their web browser, gmetefore, failed to notice
the leaked information. It is important to note that the teamthis competition are pri-
marily made up of graduate and undergraduate level stuffentsvarious universities;
many would not be considered security professionals. Nlesksss, we assumed that
the meticulous eye of a novice-to-intermediate level haekiempting to break into a
web service would be more likely to detect information leggkavhen compared to a
web developer testing their application for “correct” page.

Of the 72 teams in the competition, 69 contacted the web satVeast once. 44 of
these 69 teams advanced past the rst step, which requiesd th submit a le as per
the web application's speci cations. 34 of the 44 teams adea past the second step,
which required them to brute force a two-digit password. dsvat this point that the
EAR vulnerability was exposed to the teams, resulting itlaatedirect to the unautho-
rized error page and the leakage of the administrator pagarasf the HTTP redirect
response. Of the 34 teams who made it this far, only 12 suktdlgsdiscovered and

exploited the vulnerability. The fact that only 12 out of &ams were successfully able

141

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

to discover the information leaked to their browser in a laglcompetition indicated

that more research and exposure was necessary for EAR ahlliiges.

5.2 EAR Detection

In this section, we discuss the design and implementati@muokystem to detect
EAR vulnerabilities. This system uses static source co@gyais to identify cases in
which code might be executed after the call to a redirecttfanc We also introduce a
heuristic to distinguish benign EARs from vulnerable EARs.

Our tool targets the Ruby language, speci cally the Ruby aildlRweb framework.
We chose this framework for two reasons. First, Ruby on Rsiésvery popular web
framework, thus, there is a large number of open-source RuabRails web applica-
tions available for inspection (e.g., on GitHub [57]). Sedpdue to the characteristics
discussed in Section 5.1.4, all EARs present in Rails aenfsilThus, it is necessary
to use a white-box tool to detect EARs in Ruby on Rails web iappbns. Again, it
is important to note that redirects originate within thetcolters?, thus, our white-box

tool operates speci cally on controllers.

142

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

l Rails Application

1) Build CFG

CFG
\

2) Find Redirection Methods

\ CFG, interesting methods

3) Prune Infeasible Paths

\ CFG, interesting methods

4) Detect EARS

EARs

5) Classify as Vulnerable

lBenign EARs, Vulnerable EARs

Figure 5.1: The logical ow of the white-box tool.

5.2.1 Detection Algorithm

The goal of our EAR detector isto nd a path in the controbeControl Flow Graph
(CFG) that contains both a call to a redirect method and coliewiing that redirect
method. An overview of our algorithm is given in Figure 5.IheTalgorithm operates
in ve steps: (i) generate the CFG of the controller; (ii) mddirection methods; (iii)
prune infeasible paths in the CFG to reduce false posit{ix@sietect EARs by nding
a path in the CFG where code is executed after a redirect mhéshzalled; (v) use a

heuristic to differentiate between benign and vulnera A&

4Redirects can also occur in Rails' routing, before the retgets to the controller. However, EARs
cannot occur in this context, because control ow neverheaa controller. Thus, we are not concerned
with these redirects.

143

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

Step 1: Building the Control Flow Graph

We built our system on top of the Ruby parser presented bydtait [54]. This parser
rst compiles Ruby into a subset of the Ruby language calladyRintermediate Lan-
guage, or RIL. The purpose of RIL is to simplify Ruby code iatoeasier-to-analyze
format. The simpli cation is performed by removing ambites in expressions, re-
ducing Ruby's four different branches to one canonicalespntation, making method
calls explicit, and adding explicit returns. At the end cé thansformation, every state-
ment in RIL is either a statement with one side effect or atiamhe parser generates
the CFG of RIL.

Due to Ruby's dynamic nature, this CFG might be incompletgdrticular, strings
containing Ruby code can be evaluated at run-time usingtia¢ function, object
methods can be dynamically called at run-time usingséned function, and methods
can be added to objects at run-time. We do not address EARaldilities associated
with these language features. However, we have found tleaetfeatures are rarely

used in practice (see Section 5.2.2).

Step 2: Finding Redirection
To detect EARs, we must rst nd all program paths (from anygram entry to any
program exit point) in the CFG that call the Ruby on Rails metredirect _to .

The reason is that we need to check these paths for the peesérmode execution

144

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

between the redirect call and the program exit point. Naeitttira-procedural analysis
is not enough to nd all EARs. Consider the code in Listing.5%mply looking in
ensure _admin for code executiorafter the call toredirect _to andbeforethe
end of this method is not suf cient. Thus, we need to perfonteti-procedural analysis
to nd all possible ways in which code execution can contiafter aredirect _to
call until the end of the program.

Our inter-procedural analysis proceeds as follows: we btamding all methods
that directly callredirect _to . These methods are added to a set caliéeresting
methods Then, for each method in theteresting methodset, we add to this set all
methods that call it. This process is iterated until a xpas reached, and no new
interesting methods are found.

At this point, every element (method) interesting methodsan eventually lead
to aredirect _to call. Whenever a call to an interesting method returns x¢xe-
tion will continue after the call site in the caller. Thusl paths from invocations of
redirect _to until the end of the program are captured by the paths fronmadl-
cations (call sites) of interesting methods to the end ointle¢hods that contain these
calls. Now, to detect an EAR, we can simply look for code tkagxecuted on a path
from the call site of an interesting method until the end efitethod that contains this

call.

145

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

class UsersController < ApplicationController
def ensure_logged in
if not current_user
redirect_to("/") and return false
end
@logged_in_users += 1
return true
end
def delete_all
if not ensure_logged_in()
return
User.delete(:all)
end
end

Listing 5.4: Example of a potential false positive.

Step 3: Prune Infeasible Paths
Looking for all paths from theedirect _to method to the program exit point might
lead to false positives due to infeasible paths. Considerettample in Listing 5.4.
There are no EARs in this code. Thedirect _to on Line 4 will always return
true , thus,return false (also on Line 4) will execute as well. Because of this,
ensure _logged _in will always returnfalse after performing a redirect. As a
result, the call teensure _logged _in on Line 11 will always returtialse , and the
return on Line 12 will always occur.

The CFG for the code in Listing 5.4 is shown in Figure 5.2. Withadditional
processing, we would incorrectly report the path froedirect _to on Line 4 to

the statement in Line 6. Moreover, we would also report an Eb&Bause of the path

146

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

delete all
tmp: ensure_logged_in()
ensure_logged_in

redirect_to("/") true

- false (1

)
RN

“true (2)

(2)

Figure 5.2: Control Flow Graph for the code shown in Listing.5 'he dotted lines are
paths removed from the CFG by Step 3 of the EAR detection lfgor

from the redirect to th&ser.delete on Line 13. The rst path is denoted as (1) in
Figure 5.2, the second path as (2).

To prune infeasible paths in the CFG, we explore all pathifttiaw an interesting
method. Ifall paths following an interesting method call return the sanoel&an
value, we propagate this Boolean constant to all the ca sif this method. Then, we
recursively continue constant value propagation at alctiksites, pruning infeasible

paths everywhere after the interesting method is called.it®¥vatively continue this

147

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

process throughout the CFG; whenever we nd a constantrefailiue, we propagate
this return value to all call sites.

Figure 5.2 shows the results of performing our pruning pgea the CFG of List-
ing 5.4. Initially, all paths after theedirect _to in ensure _logged _in do not
return the same Boolean, so we cannot conclude anythingt éheuweturn value of
ensure _ogged _in . However,redirect _to always returndrue . Therefore,
we perform constant value propagation on the return valuedifect _to , which
is used in a branch. As a consequence, we can prune all of the {bet result from
thefalse branch. The edges of this path are labeled with (1) in Figuze Now, all
paths fromredirect _to returnfalse , which means thagnsure _logged _in
will always returnfalse after a redirect. We now perform constant value propagation
at all the call sites oénsure _logged _in , removing all the paths labeled with (2).
At this point, there is nothing more to be pruned, so we stbpam be seen that there
is no path fronredirect _to to state-changing code (de ned in the next step) along

the solid lines.

Step 4: Detecting EARSs
Once the CFG of the controller has been simpli ed and intémgsnethod information
has been extracted, we perform EAR detection. This is ayfairhple process; we

traverse the CFG of every method to see if potentially prolalic code can be exe-

148

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

cuted after a call to an interesting method. We conserdgitde ne such code as any
statement that could possibly modify the program statdueitg statements that alter
the control ow. This excludeseturn and branches, but includes assignment and
method calls. As a special case, we also disregard all apesahat set thélash or
session array variable. These arrays are used in the former cas¢ éonsessage to
be displayed on the destination page, and in the latter casite some information

in the user's session. These calls are disregarded bedasdd no affect the state of
the web application and are frequently called after retimac We report as a potential
EAR each method that executes potentially problematic cadeeen the invocation

of an interesting method and its return statements.

Step 5: Distinguishing Between Benign and Vulnerable EARs

We also introduce a heuristic to identify vulnerable EARBisTheuristic looks for paths
from an interesting method to a function that modi es theathaise. If one is found,
the EAR is marked as vulnerable. We used the Rails documemtat determine the
16 functions that modify the database. Of course, this kst be easily extended.
This process is not sound, because we perform no type asadysi look only at the
method names being called. Moreover, we do not analyze thaeisioonly looking

for this speci c list. Despite these limitations, our retsu{Section 5.3.1) show that

149

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

this heuristic is still a good indicator of potentially veirable EARs that deserve the

developer's attention.

5.2.2 Limitations

The white-box EAR detector is limited to analyzing Ruby onl&®applications, al-
though the detection algorithm can be extended to any pmugiag language and web
framework. Detection is neither sound nor complete. Faégmtives can occur when
a Rails application uses Ruby's dynamic features suatvat or send to execute a
redirect. While such dynamic features are used extensinéhe Ruby on Rails frame-
work itself, they are rarely used by web applications wnitite Rails. Of the 3,457,512
method calls in controllers that we tested our tool on, thezee 428 (0.012%#val
method calls and 2,426 (0.07%gnd method calls, which shows how infrequently
these are used in Rails web applications.

The white-box tool can report two types of false positivesisé EARSs, that is,
the tool reports an EAR although no code can be executed aftedirect, or false
vulnerable EARs, where the tool mistakes a benign EAR asevabie.

False EARs can occur for several reasons. One reason ishthaath from the
redirect function to the code execution that we found isasiile. A typical example is
when the redirect call and the code execution occur in oppasanches. The branch

conditions for these are mutually exclusive, so there caemge a path from the redi-

150

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

Type of EAR reported Number reported
Benign 3,089
Vulnerable 855
Total 3,944
Total Projects 18,127
Any EAR 1,173
Only Benign 830
At least one vulnerable EAR 343

Table 5.1: Results of running the white-box detector ag&nby on Rails applications,
6.5% of which contained an EAR aw. 2.9% of the projects hade&R classi ed as
vulnerable.

rect call to the code execution. Examples of this type o&fglgsitive are discussed in
Section 5.3.1, and these could be mitigated by introducettebpath sensitivity.

False vulnerable EARs are a problem caused by the heurgtonte use. The
biggestissue is that we simply look for method calls thatlthe same name as method
calls that update/change the database. However, we do riotrpeany type analysis
to determine th@bjectthat the method is called on. Thus, methods suctiedeste
on a hash table will trigger a false vulnerable EAR, sidetete is also a method of
the database object. Improved heuristics could be deve)dpeinstance, that include
the type of the object the method is being invoked on.

Despite these limitations, our experiments demonstrade ttie tool works very
well in practice. In addition, Ruby on Rails controllers &rpically very small, as most

application logic is present in the models. Thus, our toalkswery well on these types

151

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

of controllers. We provideour tool to the community at large, so that others may use

it to detect EARSs in their code.

5.3 Results

We used our EAR detection tool to nd real-world EARs in opsmirce Ruby
on Rails web applications. First, we downloaded 59,255 egmence projects from
GitHub [57] that were desighated as Ruby projects and thaé wet a fork of an-
other project. We identied 18,127 of the downloaded Rubgjgcts that had an
app/controllers folder, indicating a Ruby on Rails application.

Table 5.1 summarizes the results. In total, we found 3,94R E¥stances in 1,173
projects. 855 of these EARS, present in 343 projects, wassced as vulnerable by
our system. This means that 6.5% of Rails applications wiedesontained at least
one EAR, and 29.3% of the applications containing EARs ha&AR classi ed as
vulnerable.

Of the 1,173 projects that contained at least one EAR, weetbthose project
owners that had emails listed in their GitHub pro le, for aaioof 624. Of these project
owners, 107 responded to our email. Half of the respondéfis;on rmed the EARs
we reported. 26 other respondents told us that the GitHujegra/as no longer being

maintained or was a demo/toy. Three respondents pointddlsatpositives, which we

Shttps://github.com/adamdoupe/find_ear_rails

152

https://github.com/adamdoupe/find_ear_rails

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

Classi cation after manual analysis Number

True Vulnerable EARs 485
Benign EARs 325
No EARs (False Positives) 45

Table 5.2: Results of manually inspecting the 855 vulner&ARs reported by our
white-box tool. 40.1% were benign, and 5.3% were not EARs.

con rmed, while 6 of the project owners said that there wesegoing to x the EAR
because there was no security compromise. The rest of thermress thanked us for the

report but did not offer a con rmation of the reported EAR.

5.3.1 Detection Effectiveness

To determine the effectiveness of our tool, we manuallyéesgd all 855 vulnera-
ble EARs. The results are shown in Table 5.2. We manuallyagthat 485, or 59.9%,
were true positives. Many of these were caused by ad-hooazdion checks, where
the developer simply introduced a redirect when the cheitddfa Some examples of
security violations were allowing non-administratorsesxto administrator function-
ality, allowing modi cations to items not belonging to tharcent user, and being able
to sign up for a conference even though it was full.

Listing 5.5 shows an interesting example adapted from aEA& where the redi-
rect is followed byand return (Line 3), however, due to Ruby's semantics, this

code contains an EAR. In Rubyraturn with no arguments returrfalse ¢, thus,

8Technicallynil , butnil andfalse are equivalent for Boolean comparisons.

153

1
2
3
4
5
6
7
8

9
10
11
12

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

class BanksController < ApplicationController
def redirect_to_login
redirect_to("/login") and return
end
def create
if not current_user.is_admin?
redirect_to_login() and return
end
@bank = Bank.create(params[:bank])
end
end

Listing 5.5: True positive Execution After Redirect vulability in Ruby on Rails.

redirect _to _login will always returnfalse (because of theeturn call with
no arguments on Line 3). The result is that teurn on Line 8 will never be exe-
cuted, becausedirect _to _login will always returnfalse , and the short-circuit
logic of and will cause Line 10 to be executed. This example shows thatamidis-
covers non-obvious EARs.

For vulnerable EARs, we consider two different types ofdgissitives: falseul-
nerableEARs, which are benign EARs mistakenly reported as vulderamnd false
EARs (false positives).

As shown in Table 5.2, the white-box tool generated 45 fala®E for a false
positive rate of 5.3%. These false positives came from twonroategories. About
half of the false positives were due to impossible paths ftberedirect methods to
some code. An example of this is when a redirect method waedcat the end of a

branch that checked that the request was an HTTP GET, wigledtie executed after

154

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

a redirect was in a branch that checked that the request wd$8R POST. These two
conditions are mutually exclusive, thus, this path is ingilae. The other half of false
positives were due to local variables that had the same naraeedirect method. The
parsing library, RIL, mistakenly identi ed the local vabke access as a method call to
a redirect method. We are currently looking into xing th&sue in RIL, which will
almost halve our false positive rate.

While our false EAR rate was only 5.5%, our vulnerable EARedBbn heuristic
had a higher false detection rate of 40.1%. The biggestittdpfalse vulnerable EARs
(72.9% of the instances) was due to no feasible path fronettieact to the method that
changed the state of the database. For instance, the tedettod occurred in a branch
that was taken only when a certain object wds 7. Later, the database method was
called on this object. Thus, when the redirect happens,ifezowill benil . Because
of the presence of an EAR aw, execution will continue andcrethe database access
method. However, since the objectig |, the database will not be affected. Because
our heuristics cannot detect the fact that, after the retithe database function will
always be called with ail object, we report a vulnerability. The other common
false vulnerable EAR were instances where the redirectodettas called before code
was executed, however, it was clear that the developer Wiigsafuare of the redirect

semantics and intended for the code to be executed.

"nil is Ruby'snull .

155

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

We also checked that the false EAR rate did not differ sigantty among the be-
nign EARs by manually inspecting 200 random EARS reporteloessgn. We saw 13
false EARs in the manual inspection, for a false positive mdt6.5%. Thus, the total
false positive rate among the instances we manually inegast5.5%. We also did
not see any vulnerable EARs among the benign EARSs, thus, dvealisee any false
negative vulnerable EARs in our experiments.

From our results, we can conclude that we detect EARs welvéyer, it is more
dif cult to distinguish between benign and vulnerable EARGlassi cation could be
improved by using a better heuristic to detect intendedeets. However, even though
certain EARs might not be vulnerable at the moment, theytdl@gramming errors
that should be xed. This is con rmed by the responses thatreeeived from devel-
opers who were grateful for error reports even though theynat exploitable at the
moment. Also, our tool reports one true vulnerability foegvbenign EAR mistak-
enly classi ed as vulnerable. This is well in line with theeprsion of previous static

analysis tools [72,79,92].

5.3.2 Performance

To evaluate the performance of our tool, we measured themgriime against the
18,127 Ruby on Rails applications. We ran our experimentaroimtel Core i7 with

12 gigabytes of RAM. Our algorithm scales linearly with theesof the CFG and is

156

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

fast; no project took longer than 2.5 seconds even with tlge$t CFG size of 40,217

statements.

5.4 Prevention

The old adage “an ounce of prevention is worth a pound of cigé¢fue in soft-
ware. Boehm showed that the later in an application’s lifeke bugs are caught, the
more expensive they are to x [23]. Thus, preventing certgipes of bugs from even
being introduced is attractive from both an economic stamtpand a security per-
spective. Our recommendation to web frameworks, thergisreo make Execution
After Redirect vulnerabilities impossible to occur, by ey every invocation of the
redirect method halt execution, which we call halt-on-recti behavior.

As we have shown in Section 5.1.4, some frameworks havedgireither adopted
the approach of making EARs impossible, or their approaafpetterating HTTP re-
sponses makes EARs highly unlikely. For existing framewdHat wish to decrease
the chance of EARs being introduced, such draconian meamag not be acceptable
because they break backward-compatibility. Our suggestithese cases is to make
an application-wide setting to enable halt-on-rediretidwor, along with an argument

to the redirect function to halt execution after the redir€f course, we suggest mak-

157

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

ing halt-on-redirect the default behavior, however eaam@work will have to properly
balance security and backward-compatibility.

To improve the security of Ruby on Rails, we are in discussiaith the Rails
development team about our proposed change. The dif cuitly implementing halt-
on-redirect behavior in Rails is that there areguto s, and Rails applications run in
a single-threaded context. This limits the two obvious fewhimplementing halt-on-
redirect: we cannot use a goto or language equivalent statiehmjump from the end of
theredirect _to method to the code after the controller is called. Moreoweralso
cannot, at the end of theedirect _to method, send the HTTP response and cause
the current thread to stop execution. PHP frameworks carthgsexit function to
implement halt-on-redirect behavior, because each régpas/ns a new PHP process.

Our proposed solution is to throw a new type of exceptiRedirectOccured-
Exception , atthe end of theedirect _to body. In the Ruby on Rails framework
core, where the controller is called, there is a catch blacktiis exception. While
this will prevent almost all EARS, there is a possibility fmode to be executed in an
ensure block, Ruby's equivalent of a “ nally” block. Code in this btk will be
executed regardless of a redirect. However, we believadisismantically in line with
the way the language should work: ensure blocks will alwaygxXxecuted, no matter

what happens, and this is clear to the programmer via theibegejs semantics.

158

Chapter 5. Discovering and Mitigating Execution After Redt Vulnerabilities

5.5 Conclusions

We have described a new type of vulnerability, ExecutioreARedirect, and de-
veloped a novel static analysis tool to effectively nd EARSe showed that EARs are
dif cult to differentiate between benign and vulnerablehi§ dif culty is due to vul-
nerable EARSs violating the speci c logic of the web applicat Better understanding
of the application’s logic should help differentiate vulable and benign EARs and it

will be the focus of future work.

159

Chapter 6

Toward Preventing Server-Side XSS
via Automatic Code and Data
Separation

Automatically nding vulnerabilities, as we have done irethrevious chapters, is a
great way to nd vulnerabilities in web applications. Hovegythere is always the risk
that the automated tools do not nd a vulnerability, and eéhesls give no guarantees
that all vulnerabilities are found. Another avenue to seameb applications from at-
tack is to write the application in such a way as to make valbidities impossible. In
this chapter, we examine Cross-Site Scripting vulnertaslias having the root cause
of Code and Data mixing. By properly applying the basic siégprinciples of Code
and Data separation we can automatically prevent a widehsav&tross-Site Scripting

vulnerabilities.

160

Chapter 6. Toward Preventing Server-Side XSS

Web applications are prevalent and critical in today's catmg world, making
them a popular attack target. Looking at types of vulnetizdxsl reported in the Com-
mon Vulnerabilities and Exposures (CVE) database [41], amllication aws are by
far the leading class.

Modern web applications have evolved into complex prograifisese programs
are no longer limited to server-side code that runs on theseeker. Instead, web ap-
plications include a signi cant amount of JavaScript codattis sent to and executed
on the client. Such client-side components not only proaidieh and fast user inter-
face, they also contain parts of the application logic apitslly communicate with the
server-side component through asynchronous JavaSchipt 6& a result, client-side
scripts are an integral component of modern web applicatiand they are routinely
generated by server-side code.

There are two kinds of cross-site scripting (XSS) vulnditds: server-side and
client-side. The latter is essentially caused by bugs irctiemt-side code, while the
former is caused by bugs in the server-side code. In thistehay focus on server-side
XSS vulnerabilities (unless speci ed otherwise, we wileusSS to refer to server-side
XSS). XSS vulnerabilities allow attackers to inject clieside scripting code (typically,
JavaScript) into the output of web applications. The ssrgge then executed by the
browser as it renders the page, allowing malicious codenarrthe context of the web

application. Attackers can leverage XSS attacks to leakiemuser information, im-

161

Chapter 6. Toward Preventing Server-Side XSS

personate the victim to perform unwanted actions in theecdmf the web application,
or launch browser exploits.

There has been a signi cant amount of research effort onieéiting XSS vulner-
abilities. The main line of research has focused on sangizntrusted input [11, 58,
67,80,90,92,101,123,125,136, 141, 143, 145, 146]. Zatitin attempts to identify
and “clean up” untrusted inputs that might contain Javg®code. Performing correct
sanitization is challenging, for a number of reasons. Oasae is that it is dif cult
to guarantee coverage for all possible paths through thikcapipn [11, 143]. As part
of this problem, it is necessary to nd all program locatigesurces) where untrusted
input can enter the application, and then verify, alongafpam paths, the correctness
of all sanitization functions that are used before the inpent to the client (sinks).
Furthermore, it is not always clear how to properly sanitiata, because a single input
might appear in different contexts in the output of the aggilon [125].

The root cause of XSS vulnerabilities is ththe current web application model
violates the principle of code and data separatioim the case of a web page, the
data is the HTML content of the page and the code is the Jaya®ode. Mixing
JavaScript code and HTML data in the same channel (the HT3jporse) makes it
possible for an attacker to convince a user's browser tapné¢ maliciously crafted
HTML data as JavaScript code. While sanitization tries ta wntrusted input, which

could potentially contain code, into HTML data, we belielie fundamental solution

162

Chapter 6. Toward Preventing Server-Side XSS

to XSS is to separate the code and data in a web page—the way_ldmtJavaScript
should have been designed from the start. Once the code tmdréasseparated, a web
application can communicate this separation to the browaseérthe browser can ensure
no code is executed from the data channel. Such commumcartio enforcement is
supported by the new W3C browser standard Content SecuwiiyyCSP) [131].

While new web applications can be designed with code and stggarated from
the start, it has been a daunting task to achieve code andséptaation for legacy
applications. The key challenge is to identify code or datdhie output of a web
application. Previous solutions have relied on either bgpars' manual annotations or
dynamic analysis. For example, BEEP [77] requires devetofmemanually identify
inline JavaScript code. IRJEPRINT [93] requires developers to manually identify the
data by specifying which application statements could wutmtrusted input. XSS-
GUARD dynamically identi es application-intended Javaiptcode in a web page by
comparing it with a shadow web page generated at run time [IB¢ main problem
preventing these solutions from being adopted is eithersitpei cant manual effort
required from application developers or the signi canttiome performance overhead.
In fact, Weinberger et al. [142] showed how dif cult it is toanually separate the code
and data of a web application.

In this chapter, we preseDEDACOTA, the rst system that can automatically and

statically rewrite an existing web application to sepacatge and data in its web pages.

163

Chapter 6. Toward Preventing Server-Side XSS

Our novel idea is to use static analysis to determine atiénliavaScript code in the web
pages of an application. Speci callpeDACOTA performs static data- ow analysis of

a given web application to approximate its HTML output. Thiéparses each page's
HTML output to identify inline JavaScript code. Finallyré@writes the web application

to output the identi ed JavaScript code in a separate Jay@iSle.

The problem of statically determining the set of (HTML) outp of a web applica-
tion is undecidable. However, as we observe in our evalnati@ problem is typically
tractable for real-world web applications. These appilices are written by benign
developers and tend to have special properties that allow aempute their outputs
statically. For instance, the majority of the inline Java&acode is static in the web
applications we tested.

Dynamic inline JavaScript presents a second-order prabléene, the JavaScript
code itself (rather than the HTML page) is generated dynaltyion the server and
may depend on untrusted inputs. Again, the potential for X&l8erabilities exists.
DEDACOTA provides a partial solution to this problem by producingtaléor all po-
tentially dangerous instances of dynamic JavaScript géioerin the application and
by safely sanitizing a large subclass of these instances.

We implemented a prototype ofEDACOTA to analyze and rewrite ASP.NET [98]
web applications. We appliedEDACOTA to six open-source, real-world ASP.NET

applications. We veri ed that all known XSS vulnerabilgiare eliminated. We then

164

Chapter 6. Toward Preventing Server-Side XSS

performed extensive testing to ensure that the rewritteari@s still function correctly.
We also testedEDACOTA's performance and found that the page loading times be-

tween the original and rewritten application are indistiis¢pable.

The main contributions of this chapter are the following:

A novel approach for automatically separating the code ad of a web appli-

cation using static analysis (Section 6.3).

A prototype implementation of our approacdgDACOTA, applied to ASP.NET

applications (Section 6.4).

An evaluation ofbEDACOTA, showing that we are able to apply our analysis
to six real-world, open-source, ASP.NET applications. Wevsthat our imple-
mentation prevents the exploitation of know vulnerataitand that the semantics

of the application do not change (Section 6.5).

6.1 Background

In this section, we provide the background necessary foerstanding the design

of DEDACOTA.

165

Chapter 6. Toward Preventing Server-Side XSS

6.1.1 Cross-Site Scripting

Modern web applications consist of both server-side arehtiide code. Upon
receiving an HTTP request, the server-side code, whicltpis&jly written in a server-
side language, such as PHP or ASP.NET, dynamically geseaateeb page as a re-
sponse, based on the user input in the request or data in arizthclatabase. The
client-side code, which is usually written in JavaScripd #executed by the browser,
can be either inline in the web page or external as a staneldraScript le.

Cross-site scripting (XSS) vulnerabilities allow an akircto inject malicious Java-
Script into web pages to execute in the client-side broveseif,they were generated by
the trusted web site. If the vulnerability allows the at&dio store malicious JavaScript
on the server (e.g., using the contents of a message postedewsgroup), the vulner-
ability is traditionally referred to as “stored” or “perggat XSS.” When the malicious
code is included in the request and involuntarily re ectedhe user (copied into the
response) by the server, the vulnerability is called “réegtXSS.” Finally, if the bug is
in the client-side code, the XSS vulnerability is referreds$ “DOM-based XSS” [86].
We call the rst two types of vulnerabilities “server-sideS% vulnerabilities” and the
latter “client-side XSS vulnerabilities.”

The root cause for server-side XSS is that the code (i.eglitet-side script) and

the data (i.e., the HTML content) are mixed together in a wadpep By crafting some

166

Chapter 6. Toward Preventing Server-Side XSS

malicious input that will be included into the returned welgp by the server-side code,

an attacker can trick the browser into confusing his dataeaSkript code.

6.1.2 Code and Data Separation

The separation of code and data can be traced back to therHakwehitecture,
which introduces separate storage and buses for code aad Separating code and
data is a basic security principle for avoiding code inttattacks [69]. Historically,
whenever designs violate this principle, there exists ardgchole. An example is the
stack used in modern CPUs. The return addresses (code ngdiatel function local
variables (data) are co-located on the stack. Because tilne reddresses determine
control transfers, they are essentially part of the codexindithem together with the
data allows attackers to launch stack over ow attacks, wltata written into a local
variable spills into an adjacent return address. In theeodrdf web applications, we
face the same security challenge, this time caused by moodg and data together in
web pages. To fundamentally solve this problem, we mustragpaode and data in

web pages created by web applications.

6.1.3 Content Security Policy

Content Security Policy (CSP) [131] is a mechanism for natiilgg a broad class of

content injection vulnerabilities in web applications. EB8 a declarative policy that

167

Chapter 6. Toward Preventing Server-Side XSS

allows a web application to inform the browser, via an HTTRder, about the sources
from which the application expects to load resources suclaeaScript code. A web
browser that implements support for CSP can enforce theisgpolicy declared by
the web application.

A newly developed web application can leverage CSP to av&8 Xy not using
inline JavaScript and by specifying that only scripts froreed of trusted sites are al-
lowed to execute on the client. Indeed, Google has requivadall Chrome browser
extensions implement CSP [3]. However, manually applyi&i@o a legacy web ap-
plication typically requires a non-trivial amount of work42]. The reason is that the
authors of the web application have to modify the servee-sde to clearly identify
which resources (e.g., which JavaScript programs) are lngedveb page. Moreover,
these scripts have to be separated from the web page.

CSP essentially provides a mechanism for web browsers twanthe separation
between code and data as speci ed by web applications. Otk s@ves the problem
of automatically transforming legacy web applicationstsat the code and data in their
web pages are separated. The transformed web applicatiartben directly leverage

the browser's support for CSP to avoid a wide range of XSSenalbilities.

168

Chapter 6. Toward Preventing Server-Side XSS

6.2 Threat Model

Before discussing the designmEDACOTA, we need to state our assumptions about
the code that we are analyzing and the vulnerabilities waddeessing.

Our approach involves rewriting a web application. This \apblication is written
by a benign developer—that is, the developer has not imtealily obfuscated the code
as a malicious developer might. This assumption also mdsaigte JavaScript and
HTML are benign and not intentionally taking advantage @vser parsing quirks (as
described in BUEPRINT [93]).

DEDAcOTA will only preventserver-sideXSS vulnerabilities. We de ne server-
side XSS vulnerabilities as XSS vulnerabilities whererthet causeof the vulnerabil-
ity is in server-side code. Speci cally, this means XSS \anabilities where unsani-
tized input is used in an HTML page. We explicitly do not pritagainst client-side
XSS vulnerabilities, also called DOM-based XSS. ClieniesKSS vulnerabilities oc-
cur when untrusted input is interpreted as JavaScript bglibet-side JavaScript code
using methods such &val , document.write , orinnerHTML . The root cause
of these vulnerabilities is in théavaScript code

In this chapter, we focus solely on separating inline JakipScode (that is, Java-
Script in betweerkscript> and</script>). While there are other vectors where

JavaScript can be executed, such as JavaScript code in HitMiuges (event handlers

169

Chapter 6. Toward Preventing Server-Side XSS

such aonclick) and inline Cascading Style Sheet (CSS) styles [64], tHerigaes
described here can be extended to approximate and reweitd TML attributes and
inline CSS.

Unfortunately, code and data separation in an HTML pagetispanacea for XSS
vulnerabilities. In modern web applications, the inlin@alacript code is sometimes
dynamically generated by the server-side code. A commomasiceis to use the dy-
namic JavaScript code to pass data from the server-sidetodtie client-side code.
There may be XSS vulnerabilities, even if code and data aneeply separated, if the
data embedded in the JavaScript code is not properly saaitZDACOTA provides a

partial solution to the problem of dynamic JavaScript (se€tin 6.3.5).

6.3 Design

Our goal is to statically transform a given web applicatiorttzat the new version
preserves the application semantics but outputs web pabgesevall the inline Java-
Script code is moved to external JavaScript les. Theserazgieles will be the only
JavaScript that the browser will execute, based on a CoB8tturity Policy.

There are three high-level steps to our approach. For eabhpage in the web
application: (1) we statically determine a conservativpragimation of the page's

HTML output, (2) we extract all inline JavaScript from thepapximated HTML out-

170

Chapter 6. Toward Preventing Server-Side XSS

1 <html>

2 <% Title = "Example";

3 Username = Request.Params['name"]; %>
4 <head><tile><%= Title %></title></head>

5 <body>

6 <script>

7 var username = "<%= Username %>";
8 </script>

9 </body>

10 </html>

Listing 6.1: Example of a simple ASP.NET Web Form page.

put, and (3) we rewrite the application so that all inlinealeript is moved to external
les.

Hereinafter, we de ne a running example that we use to desditowDEDACOTA
automatically transforms a web application, accordinghtthree steps outlined pre-

viously.

6.3.1 Example

Listing 6.1 shows a simplied ASP.NET Web Form page. Notettbeerything
not in between th&%and %>is output directly to the browser. Everything between
matching<%and%>is C# code. A subtle but important point is theo=is used to
indicate that the C# code will output a string at that logaiiothe HTML output.

In Listing 6.1, Line 2 sets the title of the page, and Line gsbeUsername
variable to thename parameter sent in the query string. Thisername is output to

the browser inside a JavaScript string on Line 7. This is amgte of the C# server-

171

1
2
3
4
5
6
7

oo

Chapter 6. Toward Preventing Server-Side XSS

void Render(TextWriter w) {
w.Write("<htmI>\n ");
this .Title = "Example”;
this .Username = Request.Params['name'];
w.Write("\n <head><tile>");
w.Write(this .Title);
w.Write("</title></head>\n <body>\n <script>\n var
w.Write(this .Username);
w.Write("\";\n </script>\n </body>\n</htmI>");

10}

Listing 6.2: The compiled C# output of Listing 6.1.

side code passing information to the JavaScript clierg-smde, as the intent here is
for the JavaScriptisername variable to have the same value as thel@¥rname
variable.

Internally, ASP.NET compiles the ASP.NET Web Form page tpdithher when the
application is deployed, or on-demand, as the page is aate$he relevant compiled
C# output of Listing 6.1 is shown in Listing 6.2. Here, the ASET Web Form page
has been transformed into an equivalent C# program. TheNEIPcompiler creates
a class (not shown) that represents the ASP.NET Web Form. tAadeof the class
is given aTextWriter object as a parameter. Anything written to this object will
be sent in the HTTP respons&extWriter.Write iIs a method call equivalent of
writing to the console in a traditional command-line apation.

From comparing Listing 6.1 to Listing 6.2, one can see thdapwaunot between
<%and%>tags is written to th& extWriter object. The code between tk&band

%>tags is inlined into the function (Lines 3 and 4), and the cthde is between the

172

Chapter 6. Toward Preventing Server-Side XSS

<%=and%>tags is written to th&@extWriter object (Lines 6 and 8). We also note
that TextWriter.Write is one of a set of methods used to write content to the
HTTP response. However, for simplicity, in the remaindethis chapter, we will use
TextWriter.Write to represent all possible ways of writing content to the HTTP

response.

6.3.2 Approximating HTML Output

In the rst phase of our approach, we approximate the HTMLpotibf a web page.
This approximation phase is a two-step process. First, wed t®determine, at every
TextWriter.Write location, what is being written. Second, we need to detegmin
the order of thél'extWriter.Write function invocations.

We use a different static analysis technique to answer eatiredwo questions.
To determine what is being written atTa&xtWriter.Write , we use the points-to
analysis algorithm presented in [38] modi ed to work on .NEyfte-code, instead of C.
This points-to analysis algorithm is inclusion-based, dedidriven, context-sensitive,
eld-sensitive, and partially ow-sensitive. The points-analysis algorithm computes
the set of strings that alias with the parameter extWriter.Write . If all strings
in the alias set are constant strings, the output at éhe&Writer.Write will be de-

ned as the conjunction of all possible constant stringshédivise, we say the output is

statically undecidable. To determine the ordering oTaktWriter.Write method

173

Chapter 6. Toward Preventing Server-Side XSS

h<head><tile> , Line5i

hExample , Line 6i

i

Ll hxftitle></head><body><script>var username = " ,Line7 >
]
he, Line 8
|
/\,
- h';</script></body></html> ,Line 9i >
— heseplebodyssims o Hne

Figure 6.1: Approximation graph for the code in Listing 6nta.isting 6.2. The dotted
node's content is not statically determinable.

calls, we build a control- ow graph, using standard tecluas, that only contains the
TextWriter.Write method calls.

We encode the information produced by the two static analydhe ordering of
TextWriter.Write method calls and their possible output—into a graph that we
call anapproximation graphFigure 6.1 shows the approximation graph for the code in
Listing 6.1 and Listing 6.2. Each node in the graph contaieddcation of thel ext-
Writer.Write that this node represents as well as the possible constamgssthat
could be output at thi$extWriter.Write location. Content that cannot be deter-
mined statically is represented by a wild cardthe dotted node in Figure 6.1). The
strings that may be output at tAextWriter.Write will be used to identify inline
JavaScript, and the location of tA@xtWriter.Write will be used for rewriting

the application.

174

Chapter 6. Toward Preventing Server-Side XSS

hescript> |, Line 20

hsetupAdmin(); , Line 30 hsetupGuest(); , Line 3G

Qar test = ", Line AD
........... «

o*

£ he, Linesa %

0L

(]
DL LT T T

h</script> |, Line 7G

Figure 6.2: Approximation graph with branches and a loope Blop will be collapsed
into one node to create the nal approximation graph.

In Figure 6.2 we show the approximation graph of a more compbge. The
graph in Figure 6.2 contains a branch, where each node irréimely maps to the same
TextWriter.Write method. This happens when the points-to analysis says that
the TextWriter.Write method can output one of multiple strings. The other way
there can be a branch in the approximation graph is whenighargranch in the control
ow of the web application. The graph in Figure 6.2 also camsea loop that includes
the nodes shown in bold. However, because we cannot statildermine the number
of times a loop may execute, and we want our analysis to bescaatsve, we collapse
all nodes of a loop (in the approximation graph) into a simglde. This new node now
has undecidable content (represented bY.al'he new node also keeps track of all the

TextWriter.Write methods that were part of the original loop.

175

Chapter 6. Toward Preventing Server-Side XSS

After collapsing all loops in the graph, we derive a constwveaapproximation of
the HTML output of a web page. The approximation graph is aaiéd acyclic graph
(DAG), and any path from the root node to a leaf node will reprd¢ one possible

output of the web page.

6.3.3 Extracting Inline JavaScript

In the second phase, our approach uses the approximatiph described previ-
ously to extract all possible inline JavaScript. The outgfithis phase is a set contain-
ing all possible inline JavaScript that may appear in the pase.

In an approximation graph, each unique path from the rooenoc leaf node rep-
resents a potential output of the page. A na've algorithmaldvenumerate all paths
and, thus, all outputs, and parse each output string toifgientine JavaScript. How-
ever, even without loops, the number of unique paths eversimple web page may
quickly explode and become unmanageable (this is the patloson problem faced
in static analysis).

To reduce the impact of the path explosion problem, we eixtin@danline JavaScript
directly from the approximation graph. We rst search foe thpening and closing tags
of HTML elements in the graph. We ignore tags that appear mroents. Then, for

each pair of JavaScript tags (i.&script> and</script>), we process all the

176

Chapter 6. Toward Preventing Server-Side XSS

unique paths between the opening and closing tags. For edlchwe obtain an inline
JavaScript that the program might output.

While our current prototype is relatively simplistic in garg the starting and end-
ing JavaScript les, it could be possible to use the parsimgiree from a real browser.
However, this is not as straight-forward as it seems, asnputiis a graph of all poten-
tial HTML output, not a single document. We leave this apphoi future work.

All identi ed inline JavaScript pieces are then passed @ st phase of our ap-

proach, which decides how to rewrite the application.

6.3.4 Application Rewriting

The goal of the third phase is to rewrite the application s #il identi ed inline
JavaScript will be removed from the HTML content and savedxternal JavaScript
les. Inthe HTML code, an inline JavaScript is replaced watheference to the external
JavaScript le as follows:
<script src="External.js"></script>

It is not uncommon that multiple possible inline JavaScsifippets exist between
an opening and closing JavaScript tag because there mapbehas between the tags
in the approximation graph. To know which exact inline Jargs is created, we need

to track the execution of the server-side code.

177

Chapter 6. Toward Preventing Server-Side XSS

The inline JavaScript identi ed in the previous phase faits two categories: static
and dynamic (i.e., contains undecidable content). Becaeseannot statically decide
the content of a dynamic inline JavaScript, we must trackettexution of the server-
side code to create its external JavaScript le(s) at ruatifhherefore, we can avoid
tracking the execution of the server-side codéy/for the case in which there issingle,
staticinline JavaScript code.

For a pair of opening and closing script tags that requirekirey the execution of
the server-side code, we rewrite the application in theofailhg way. At theText-
Writer.Write that may output the opening script tag, we rst check if thépot
string contains the tag. We must perform this check becalsx@\Vriter.Write
site may be used to output either inline JavaScript code loerad TML. If we nd
the opening script tag in the output, we use a session ag dac#ate that an inline
JavaScript rewriting has started. We write out everythiefpte the start of the opening
script tag. We remove the opening script tag itself. The remg content is stored
into a session buffer. Note that both session ag and bufferuaique to each opening
script tag. Then, for all subsequengxtWriter.Write method calls that are part
of the inline JavaScript we are rewriting, except for the [@isat writes the closing
tag), we append their output to the session buffer if theieesag is on. For the last
TextWriter.Write method call (i.e., the one that writes the closing scrip),tag

any string content that occurs before the closing scripigaappended to the session

178

Chapter 6. Toward Preventing Server-Side XSS

1 w.Write("</title></head>\n <body>\n ");

2
3 Session['7"] = "\n var username = \"');

4 Session["'7"] += this .Username;
5 Session["7"] += "\";\n

6

7 var hashName = Hash(Session["7"])

+
@

8 WriteToFile(hashName, Session["7"]);

9

10 w.Write("<script src=\"" + hashName + "\"></script>");

11

12 w.Write("\n </body>\n</htmI>");

Listing 6.3: The result of the rewriting algorithm appliealltisting 6.2. Speci cally,
here we show the transformation of Lines 7-9 in Listing 6.2.

buffer. Any content after the closing script tag is just vetit to the output. At this point,
the session buffer contains the entire inline JavaScrigecde save this code to an
external le and add & extWriter.Write method call that outputs the reference
to this JavaScript le.

To support JavaScript caching on the client side, the nanteeofavaScript le
is derived from its content, using a cryptographic hash efthvaScript content. An
unintended bene t of this approach is that inline JavaS¢hat is included on multiple
pages will be cached by the browser, improving applicatieriggmance by reducing
the size of the page and saving server requests.

Listing 6.3 shows the result of applying this rewriting pess to the inline Java-
Script code in Listing 6.2. The changes shown are only thoadento Lines 7-9 in

Listing 6.2.

179

Chapter 6. Toward Preventing Server-Side XSS

6.3.5 Dynamic Inline JavaScript

At this point in our analysis, we have successfully sepdréite JavaScript code
from the HTML data in the web application. If the web applioats JavaScript is
static, and by static we mean statically decidable, theapipdication is now immune to
XSS vulnerabilities. However, if the web application dyneatly generates JavaScript
with undecidable content, and that content is not propahitized inside the Java-
Script code, an attacker can exploit this bug to inject a cralis script. The approach
discussed so far does not mitigate this attack, becausapysmoves the vulnerable
JavaScript to an external le.

To understand how dynamic JavaScript can result in a vubildya consider our
example application in Listing 6.2. There is an XSS vulnéitgton Line 8 because
the Username variable is derived from theame parameter and output directly to
the user, without sanitization. An attacker could explbistvulnerability by setting
the name parameter td;alert('xss")// . This would cause the resulting inline
JavaScript to be the following, thus executing the attdskivaScript code:
<script>

var username = "";alert(’xss)/I";

</script>

180

Chapter 6. Toward Preventing Server-Side XSS

Therefore, the code section of the application is dynaryigdnerated with un-
trusted input and even with the code and data separated,ithstill an XSS vulnera-
bility.

We attempt to mitigate this problem, and therefore imprdwsedecurity of the ap-
plication, in two ways. First, we identify cases in which wancsafely rewrite the
application. Second, we notify the developer when we makglare to external trans-
formation that is potentially unsafe.

For the rst case, when the undetermined output is producezkrtain JavaScript
contexts, we can include it in a safe fashion via sanitirati®peci cally, during static
analysis we pass the dynamic inline JavaScript to a Jayg@Saiser. Then, we query
the parser to determine the contexts in which the undetedhontput (i.e., the parts)
is used. Here, for context we are referring speci cally te tHTML parsing contexts
described by Samuel et al. [123]. Possible contexts areSéaya string, JavaScript
numeric, JavaScript regular expression, JavaScript bariatc. If an undetermined
output is in a string context, we sanitize them in a way simdahow BLUEPRINT [93]
handles string literals in JavaScript.

Like BLUEPRINT, on the server side we encode the string value and store the en
coded data in JavaScript by embedding a call to a decodingifum Then when the
JavaScript is executed on the client side, the decodingitmwill decode the encoded

data and return the string. UnlikeLBEPRINT, we do not require any developer anno-

181

Chapter 6. Toward Preventing Server-Side XSS

tations because our static analysis can automaticalltifggevhich JavaScript context

an undetermined output is in.

6.3.6 Generality

While the description of our approach so far was speci ¢ tPAET Web Forms,
the high-level idea of automatically separating code artd daa legacy web appli-
cation can be generalized to any other web application fwaries or templating lan-
guages. There are still challenges that remain to apply pproach to another lan-
guage, or even another template in the same language. Thenawvosteps of our
approach that must be changed to accommodate a differgntdge or templating lan-
guage are: (1) understand how the output is created by theapelcation and (2)
understand how to rewrite the web application. Only the st&p affects the analysis
capability (as the rewriting process is fairly straightfiard).

To automatically separate the code and data of a differaguiage or templating
language, one must understand how the language or templateages its output. After
that, one would need to implement a static analysis that osate an approximation
graph. For instance, in the default Ruby on Rails templal®B Evariables are passed
to the template either via a hash table or class instancablas [120]. Therefore, one
could approximate the output of an ERB template by statidadicking the variables

added to the hash table and class instance variables (usintg{bo analysis). Once

182

Chapter 6. Toward Preventing Server-Side XSS

an approximation graph is created, detecting inline JawaiSzan be performed in the
manner previously described.

The main factor to affect the success of applying our appréa@nother web ap-
plication framework or templating language is the precisibthe static analysis, or in
other words, how precise and detailed the approximatioptgneould be. The more dy-
namicism in the language or framework, such as run-time eadeution and dynamic
method invocation, the more dif cult the analysis will be.infply, the more of the
control- ow graph that we are able to determine staticalyg better our analysis will
be. As an example the default templating language in Djamdy @lows a subset of
computation: iterating over a collection instead of agbigrioops [44]. This restriction

could make the analysis easier and therefore the appraximgitaph more precise.

6.4 Implementation

We implemented the automated code and data separationaappdescribed in
Section 6.3 in a prototype callesEDACOTA. This prototype targets ASP.NET Web
Forms applications. ASP.NET is a widely used technologyhefQuantcase top mil-
lion websites on the Internet, 21.24% use ASP.NET [25].

DEDACOTA targetsbinary .NET applications. More precisely, it takes as input

ASP.NET Web Forms binary web applications, performs theehsteps of our ap-

183

Chapter 6. Toward Preventing Server-Side XSS

proach, and outputs an ASP.NET binary that has all inlin@Sexipt code converted
into external JavaScript les. We operate at the binary lilbezause we must be able
to analyze the ASP.NET system libraries, which are onlylalée in binary form.

We leverage the open-source Common Compiler Infrastre¢i€l) [99] for read-
ing and analyzing the .NET Common Language Runtime byte.cddCl also has
modules to extract basic blocks and to transform the codesingle static assignment
(SSA) form. We also use CClI to rewrite the .NET binaries.

For the static analysis engine, we leverage the points-atysis engine of KOP
(also known as MAS) [38]. KOP was originally written for thegogramming lan-
guage. Therefore, we wrote (using CCl) a frontend that mee® .NET binaries and
outputs the appropriate KOP points-to rules. Then, aftesipg these rules, the static
analysis engine can provide either alias analysis or potnémalysis. The KOP points-
to analysis is demand-driven, context-sensitive, eldssgve, and, because of the CCI
single static assignment, partially ow-sensitive.

An important point, in terms of scalability, is the demanden ability of the static
analysis engine. Speci cally, we will only explore thosetsaf the program graph that
are relevant to our analysis, in contrast to traditionahdatv techniques which track
data dependencies across the entire program. The demiaed-dature of the static
analysis engine offers another scalability improvemerttictv is parallelism. Each

analysis query is independent and, therefore, can be ruarailel.

184

Chapter 6. Toward Preventing Server-Side XSS

default.aspx
PostCalendar

PostCalendar PageList RecentPosts

Figure 6.3: Control parent-child relationship between soof the controls in
default.aspx from the application BlogEngine.NET. The siblings are oedifrom
left to right in rst-added to last-added order.

SearchOnSearch

We also extend the KOP points-to analysis system to modabstoncatenation.
We do this by including special edges in the program graphiliécate that a variable
is the result of the concatenation of two other variables eitomputing the alias set
of a variable, we rst do so in the original way (ignoring angncatenation edges).
Then, for each variable in the alias set that has concatenatiges, we compute the
alias set for each of the two variables involved in the coewation operation. We
concatenate strings in the two alias sets and add them toritjead alias set. The
undecidable variables are tracked, so that their concistgmesult contains a wildcard.
This process is recursive, and handles arbitrary levelséatenation.

ASP.NET uses the idea of reusable components, c@lbedrols . The idea s that
a developer can write a control once and then include it iemplages, and even other
controls. This relationship of including one control ins@hother creates a parent-child
relationship between the controls (the parent being thérabthat contains the child

control).

185

Chapter 6. Toward Preventing Server-Side XSS

In an ASP.NET Web Form, child controls are rst added to theepés Child-
Controls collection, which is similar to an array. Then, during rerndeg, a parent
renders its child controls either by iterating over tkildControls or by refer-
encing a child control based on its index in @kildControls . Because the KOP
points-to analysis does not model the array relation, waagprecisely decide which
child Control is being selected during rendering. To hartkie problem, we need to
track the parent-child relationships directly.

These parent-child relationships form a tree. Figure 6@wvshthe parent-child
relationship of some of the user controlsd#fault.aspx in the application Blo-
gEngine.NET (one of the programs used in our evaluation)emMBuilding the control
graph, we must statically recreate this tree.

To create this relationship statically, we take an appraactilar to approximat-
ing the HTML output. The entry function for an ASP.NET pageFimmework-
Initialize , Which is similar to themain function for a C program. Starting from
this method, we create a control- ow graph of all callsAddParsedSubObject
which is the function that adds a child control to a parenisTives us the order of the
AddParsedSubObject calls. At each of the calls, we use the points-to analysis to

nd which control is the parent and which is the child. Thisdrmation, along with the
order of the calls ttAddParsedSubObject , allows us to recreate the parent-child

control tree.

186

Chapter 6. Toward Preventing Server-Side XSS

Application Version Known Vuln. #Web Forms # Controls ASPCO C#LOC Total LOC
BugTracker.NET 3.4.4 CVE-2010-3266 115 0 27,257 8,417 B5,6
BlogEngine.NET 1.3 CVE-2008-6476 19 11 2,525 26,987 29,512
BlogSA.NET 1.0 Beta 3 CVE-2009-0814 29 26 2,632 4,362 6,994
ScrewTurn Wiki 2.0.29 CVE-2008-3483 30 4 2,951 9,204 12,155
WebGoat.NET €9603b9d5f 2 Intentional 67 0 1,644 10,349 9,9
ChronoZoom Beta 3 N/A 15 0 3,125 18,136 21,261

Table 6.1: ASP.NET Web Form applications that we EEDACOTA on to test its
applicability to real-world web applications.

6.5 Evaluation

There are three properties that we must look at to evaluateetfiectiveness of
DEDACOTA. First, do we prevent XSS vulnerabilities in the data sectbthe ap-
plication by applying code and data separation? Second,edoowectly separate the
code and data of the application—that is, does the rewrpinegerve the application's
semantics? Third, what is the impact on the application’gpmance? To evaluate the
security of our approach, we look at ASP.NET applicationth\whown vulnerabilities.
To evaluate the correctness of our rewriting procedure,ppdyaour approach to appli-
cations that have developer-created integration tesesn, e carried out performance
measurements to answer the third question. Finally, waudssthe relation between

separating code and data in the output and sanitizing the.inp

6.5.1 Applications

We wish to evaluateEDACOTA on ASP.NET web applications that are real-world,

are open-source, and contain known vulnerabilities. Rexilel applications are impor-

187

Chapter 6. Toward Preventing Server-Side XSS

tant for showing that our approach works on real-world cagen-source is important
for other researchers to replicate our results, and knawnevable is important be-
cause we aim to automatically prevent these known vulniiabi

Unfortunately, there is no standard (or semi-standard).REP web application
benchmark that meets all three requirements. Furthermule)g these application
proved to be a challenge. Compared to other languages sUeHRshere are fewer
open-source ASP.NET applications (as most ASP.NET apitatend to be pro-
prietary). Therefore, here we present a benchmark of sikwedd, open-source,
ASP.NET applications, four of which are known-vulneraldeg of which is inten-
tionally vulnerable for education, and one of which has gdateveloper-created test
suite.

Table 6.1 contains, for each application, the version ofagy@ication used in our
evaluation, the CVE number of the vulnerability reportedtfe application, the num-
ber of ASP.NET Web Form pages, and the number of develop&ewrASP.NET
Controls . To provide an idea of the size of the applications, we alsovshe num-
ber of lines of code (LOC) of the ASP.NET controls (Web Formd &ontrols) and C#
code.

The open-source web applications BugTracker.NET [24]gBlogine.NET [19],
BlogSA.NET [20], and ScrewTurn Wiki [127] all contain an X$8Inerability as de-

ned in the associated CVE.

188

Chapter 6. Toward Preventing Server-Side XSS

WebGoat.NET [65] is an open-source ASP.NET applicationt ihantentionally
vulnerable. The purpose is to provide a safe platform foerggted parties to learn
about web security. Among the vulnerabilities present endpplication are two XSS
vulnerabilities.

ChronoZoom Beta 3 [35], is an open-source HTML5 “interaetimeline for all of
history.” Parts are written in ASP.NET Web Forms, but thenregplication is a Java-
Script-heavy HTML page. We use ChronoZoom because, uriikether applications,
it has an extensive test suite that exercises the Java®anifion of the application.
To evaluate the correctness of our rewriting, we converedmain HTML page of
ChronoZoom, which contained inline JavaScript, into an AEH Web Form page,
along with nine other HTML pages that were used by the tegt sui

These six real-world web applications encompass the spectf web applica-
tion functionality that we expect to encounter. These aapiibns constitute a total of
100,000 lines of code, written by different developers,heatth a different coding
style. Some had inline JavaScript in the ASP.NET page, soeatad inline JavaScript
in C# directly, while others created inline JavaScript in @#ng string concatena-
tion. Furthermore, while analyzing each application we @salyzed the entire .NET
framework (which includes ASP.NET); all 256 MB of binary @dAs our analysis
handles ASP.NET, we are con dent that our approach can bkeaitp the majority of

ASP.NET applications.

189

Chapter 6. Toward Preventing Server-Side XSS

6.5.2 Security

We ranDEDACOTA on each of our test applications. Table 6.2 shows the total
number of inline JS scripts per application and a breakdofmhe number of static
inline JS scripts, the number of safe dynamic inline JS ssrgnd the number of unsafe
dynamic inline JS scripts. There were four dynamic inlinesd8pts created by the
ASP.NET framework, and these are represented in Table arantheses. We chose
to exclude these four from the total dynamic inline JS sstggtcause they are not under
the developer's control, and, furthermore, they can andishze addressed by changes
to the ASP.NET library. Furthermore, it is important to ntitat our tool found these
dynamic inline JS scripts within the ASP.NET framework awm#tically.

From our results it is clear that modern web applicationguently use inline JS
scripts. The applications used a range of ve to 46 totah@l$S scripts. Of these total
inline JS scripts 22% to 100% of the inline JS scripts wergcsta

DEDACOTA was able to safely transform, using the technique outlime&ec-
tion 6.3.5, 50% to 70% of the dynamic inline JS scripts. Tleisutt means that our
mitigation technique worked in the majority of the caseghwinly zero to four actual
unsafe dynamic inline JS scripts per application.

We looked for false negatives (inline JavaScript that wehhigave missed) in two
ways. We manually browsed to every ASP.NET Web Form in thdiegtpn and

looked for inline JavaScript. We also searched for inlinea®zript in the original

190

Chapter 6. Toward Preventing Server-Side XSS

source code of the application to reveal possible scriptievious browsing might
have missed. We did not nd any false negatives in the apptina.

To evaluate the security improvements for those applinatibat had known vulner-
abilities, we manually crafted inputs to exploit these krimwgs. After verifying that the
exploits worked on the original version of the applicatisrg launched them against
the rewritten versions (with the Content Security Policadher activated, and with a
browser supporting CSP). As expected, the Content SecRatigy in the browser,

along with our rewritten applications, successfully bledlall exploits.

6.5.3 Functional Correctness

To evaluate the correctness of our approach, and to veriftywle maintained the
semantics of the original application, we used two appreachFirst, we manually
browsed web pages generated by each rewritten applicatidnndéeracted with the
web site similar to a normal user. During this process, w&dddor JavaScript errors,
unexpected behaviors, or CSP violations. We did not nd ampfems or deviations.
Second, and more systematically, we leveraged the develajiten testing suite in
ChronoZoom. Before we applied our rewriting, the originppkcation passed 160

tests. After rewriting, all 160 tests executed without esro

191

Chapter 6. Toward Preventing Server-Side XSS

Application Total JS Static Safe Dynamic Unsafe Dynamic
BugTracker.NET 46 41 3 2 (4)
BlogEngine.NET 18 4 10 4 (4)
BlogSA.NET 12 10 1 1(4)
ScrewTurn Wiki 35 27 4 4 (4)
WebGoat.NET 6 6 0 0(4)
ChronoZoom 5 5 0 0(4)

Table 6.2: Results of runnimEDACOTA against the ASP.NET Web Form applications.
Safe Dynamic is the number of dynamic inline JS scripts tleat@uld safely transform,
and Unsafe Dynamic is the number of dynamic inline JS sctfifatswe could not safely
transform.

Application Page Size Loading Time
ChronoZoom (original) 50,827 0.65
ChronoZoom (transformed) 20,784 0.63
BlogEngine.NET (original) 18,518 0.15
BlogEngine.NET (transformed) 19,269 0.16

Table 6.3: Performance measurements for two of the tesg@datapons, ChronoZoom.
Page Size is the size (in bytes) of the main HTML page rendeyeatie browser, and
Loading Time is the time (in seconds) that the browser toolo&al and display the
page.

6.5.4 Performance

To assess the impact oEDACOTA on application performance, we ran browser-
based tests on original and transformed versions of twoeofdbted applications. Our
performance metric was page-loading time in Internet Exgosl®.0, mainly to deter-
mine the impact of moving inline JavaScript into separaes.| The web server was a
3 GB Hyper-V virtual machine running Microsoft IS 7.0 und&indows Server 2008
R2, while the client was a similar VM running Windows 7. Theypital server was an

8 GB, 3.16 GHz dual-core machine running Windows Server B3

192

Chapter 6. Toward Preventing Server-Side XSS

Table 6.3 shows test results for two web applications, sumnzing performance
data from page-loading tests on the client. The table cotuhshthe average sizes
of the main HTML pages retrieved by the browser by accessiegiain application
URLSs, along with the average time used by the browser taeratrand render the pages
in their entirety. All the numbers were averaged over 20 estgl

As Table 6.3 indicatepEDACOTA's transformations incurred no appreciable dif-
ference in page-loading times. Because the original Cl¥oom page contained a
signi cant amount of script code, the transformed page $s lhan half of the origi-
nal size. On the other hand, the BlogEngine.NET page istyfitdrger because of its
small amount of script code, which was replaced by longésslito script les. The
page-loading times mirror the page sizes, also indicatiag $erver-side processing

incurred no discernible performance impact.

6.5.5 Discussion

The results of our rewriting shed light on the nature of iaelimvaScript in web
applications. Of the four applications that have dynamia3aript, 12.2% to 77.8%
of the total inline JavaScript in the application is dynamiais is important, because
one of BEEP's XSS prevention policies is a whitelist contagnthe SHA1 hash of

allowed JavaScript [77]. Unfortunately, in the modern watabcript is not static and

193

Chapter 6. Toward Preventing Server-Side XSS

frequently includes dynamic elements, necessitating ngwaaches that can handle
dynamic JavaScript.

The other security policy presented in BEEP is DOM sandlmpxibhis approach
requires the developer to manually annotate the sinks $dhbg can be neutralized.
BLUEPRINT [93] works similarly, requiring the developer to annotdte butputs of
untrusted data. Both approaches require the developernoatia annotate the sinks
in the application in order to specify the trusted Java$cilip understand the developer
effort required to manually annotate the sinks in the apgilie), we counted the sinks
(i.e., TextWriter.Write call sites) inside the 29 Web Forms of BIogSA.NET and
there were 407. In order to implement either BEEP @uUBPRINT a developer must
manually analyze all sinks in the application and annotatethat could create un-
trusted output.

Unlike BEEP and BUEPRINT, DEDACOTA is completely automatic and does not
require any developer annotatiomseDACOTA cannot prevent XSS vulnerabilities in
dynamic inline JavaScript completely. If a developer wishe prevent all XSS vul-
nerabilities after applyingeDACOTA, they would only need to examine the sinks that
occurwithin the unsafe dynamic inline JavaScript. In BlogSA.NET, thare three
sinks within the single unsafe dynamic JavaScript. Onedcctwther reduce the num-
ber of sinks by using taint analysis to check if untrusteditngan reach a sink in the

dynamic JavaScript.

194

Chapter 6. Toward Preventing Server-Side XSS

6.6 Limitations

The goal ofbEDACOTA is to automatically separate the JavaScript code from the
HTML data in the web pages of a web application using statalyais. We have
shown thatbEDACOTA is effective with real-world web applications. In this seat
we discuss its limitations in general.

The programming language of .NET has the following dynaminguage features:
dynamic assembly loading, dynamic compilation, dynamic-time method calling
(via re ection), and threading. The use of these featureg amempromise the sound-
ness of any static analysis including oursoEDACOTA. However, these language
features are rarely used in ASP.NET web applications intwecFor instance, those
applications we tested did not use any of these featureghdranore, DEDACOTA is
affected only if the use of these features determines the Hdiput of an application.

On one hand, we handle loops conservatively by approximdhat a loop can
produce anything. On the other hand, we treat the outputad@as & in the approx-
imation graph and assume it does not affect the structuteeadpproximation graph in
a way that impacts our analysis. For instance, we assumautpatmf a loop does not
contain the opening or closing script tag. Our analysis bélincorrect if this assump-

tion is violated. While we found that this assumption holoisdll the web applications

195

Chapter 6. Toward Preventing Server-Side XSS

we tested, it is possible that this assumption will not hald dther programs, thus
requiring a different approach to handling loops.

We do not offer any formal proof of the correctnesso#DACOTA. While we
believe that our approach is correct in absence of the dymanguage features, we
leave a formal proof of this to future work.

DEDACOTA currently supports the analysis of string concatenatidige support
for more complex string operations such as regular exprasss left for future work.
A potential approach is to leverage an automata-based) stnialysis engine [146].

Our approach to sanitizing dynamic JavaScript code may restepve an applica-
tion's semantics when the dynamic content being sanitized string is meant to be
used in multiple JavaScript contexts.

When deployingbEDACOTA in practice, we recommend two practices to mitigate
its limitations. First, all tests for the original web apgation should be performed on
the rewritten binary to detect any disruptions to the appiin's semantics. Second,
CSP's “Report Only” mode should be used during the testirgyiaitial deployment.
Under this mode, the browser will report violations backhe tveb server when un-
speci ed JavaScript code is loaded. This helps detect enliavaScript code that is
missed byDEDACOTA.

Finally, our prototype does not handle JavaScript code iMH&ttributes. We do

not believe that there is any fundamental limitation thakesadiscovering JavaScript

196

Chapter 6. Toward Preventing Server-Side XSS

attributes more dif cult than inline JavaScript. The onlymaor dif culty here is in the
rewriting. In order to separate a JavaScript attribute aricexternal JavaScript, one
must be able to uniquely identify the DOM element that thea$avipt attribute af-
fects. To do this, it would require generating a unique identor the HTML element

associated with the JavaScript attribute.

6.7 Conclusion

Cross-site scripting vulnerabilities are pervasive in vegplications. Malicious
users frequently exploit these vulnerabilities to infes¢ns with drive-by downloads or
to steal personal information.

While there is currently no silver bullet to preventing gvgossible XSS attack
vector, we believe that adhering to the fundamental sgcprihciple of code and data
separation is a promising approach to combating XSS vutil@r@s. DEDACOTA is a
novel approach that gets us closer to this goal, by using staélysis to automatically
separate the code and data of a web application. While noakselution, DEDACOTA
and other tools that automate making web applications sdmyiconstruction are the

next step in the ght against XSS and other kinds of vulndrtds.

197

Chapter 7

Conclusions

Throughout this dissertation, we have discussed and adlye state of web se-
curity today. | have proposed new approaches that aim to uiderabilities before a
malicious attacker has the chance. Itis in this vein of pygemly nding vulnerabili-
ties that | believe will have the greatest return-on-inwesit. By nding vulnerabilities
early on in the development process, the vulnerabilitidslvei easier and cheaper to
X.

In this spirit, for moving forward | see the web security coomity moving to
approaches that create web applications that are securensyraction. Therefore,
vulnerabilities can be prevented, just by designing aniegibn in a certain way, or
perhaps by creating a new language or framework that is eastatically analyze.
As shown throughout this dissertation, web applicatiomegtdbilities are incredibly
prevalent, and show no signs of stopping. In order to coantehis trend, we require

novel ideas: new ways of designing applications, new tapiitomatically nd secu-

198

Chapter 7. Conclusions

rity vulnerabilities, or new approaches to web applicatiohe web is too important

to wait—we must take responsibly for securing this populatfprm.

199

Bibliography

[1]

[2]

[3]

[4]

B. Acohido. Hackers breach Heartland Payment credid sgstem.USA TO-
DAY, Jan. 23, 2009.

Acunetix. Acunetix Web Vulnerbility Scannerttp://www.acunetix.
com/ .

D. Akhawe, P. Saxena, and D. Song. Privilege SeparatidTiML5 Applica-
tions. InProceedings of the USENIX Security Symposium (USERDI2.

D. Amal tano, A. Fasolino, and P. Tramontana. ReverseayiBeering Finite
State Machines from Rich Internet Applications.Rroceedings of the Working
Conference on Reverse Engineering (WCRBDS.

[5] AnantaSec. Web Vulnerability Scanners Evalua-
tion. http://anantasec.blogspot.com/2009/01/
web-vulnerability-scanners-comparison.html , Jan. 2009.

[6]

S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkaand M. D. Ernst.
Finding Bugs in Web Applications Using Dynamic Test Genieraand Explicit-
State Model CheckingEEE Transactions on Software Engineeri2910.

[7] ASP.NET MVC. http://www.asp.net/mvc

[8]

[9]

E. Athanasopoulos, V. Pappas, and E. P. Markatos. Cogetlon Attacks in
Browsers Supporting Policies. Proceedings of the Workshop on Web 2.0 Se-
curity and Privacy (W2SRR009.

M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kagel. A Solution
for the Automated Detection of Clickjacking Attacks. Rroceedings of the
ACM Symposium on Information, Computer and Communicaseasirity (Asi-
aCCs) 2010.

200

http://www.acunetix.com/
http://www.acunetix.com/
http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-comparison.html
http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-comparison.html
http://www.asp.net/mvc

Bibliography

[10] M. Balduzzi, C. T. Gimenez, D. Balzarotti, and E. Kirdautomated Discovery
of Parameter Pollution Vulnerabilities in Web Applicatsonin Proceedings of
the Symposium on Network and Distributed System Secuit@8)2011.

[11] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic Kt.da, C. Kruegel, and
G. Vigna. Saner: Composing Static and Dynamic Analysis lalsge Sanitiza-
tion in Web Applications. IrProceedings of the IEEE Symposium on Security
and Privacy 2008.

[12] D.Balzarotti, M. Cova, V. Felmetsger, and G. Vigna. hmhodule Vulnerability
Analysis of Web-based Applications. Rroceedings of the ACM Conference on
Computer and Communications Security (CCH)07.

[13] A.Barth, C. Jackson, and J. C. Mitchell. Robust Defariee Cross-Site Request
Forgery. InProceedings of the ACM Conference on Computer and Comnwnica
tions Security (CCSR008.

[14] J. Bau, E. Bursztein, D. Gupta, and J. C. Mitchell. Std#tthe Art: Automated
Black-Box Web Application Vulnerability Testing. IRroceedings of the IEEE
Symposium on Security and Priva@p10.

[15] T. Berg, B. Jonsson, and H. Raffelt. Regular InferermreState Machines using
Domains with Equality Tests. IRroceedings of the International Conference on
Fundamental Approaches to Software Engineering (FASE)S8.

[16] R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. @\@or, S. Pfeif-
fer, and 1. Hickson. HTML5. http://lwww.w3.0rg/TR/2014/
CR-html5-20140204/ , Feb. 2014.

[17] N. Bilton and B. Stelter. Sony Says PlayStation Hacket Bersonal DataThe
New York TimgsApr. 27, 2011.

[18] P. Bisht and V. Venkatakrishnan. XSS-GUARD: Precise@yic Prevention of
Cross-Site Scripting Attacks. IRroceedings of the Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment ()] 2008.

[19] blogengine.net - an innovative open source bloggirdgfeim. http://www.
dotnetblogengine.net , 2013.

[20] BlogSA.NET. http://www.blogsa.net/ , 2013.

[21] B. Boe. UCSB's International Capture The Flag Compati®010 Challenge 6:
Fear The EARAttp://cs.ucsb.edu/ ~ bboe/r/ictf10 , Dec. 2010.

201

http://www.w3.org/TR/2014/CR-html5-20140204/
http://www.w3.org/TR/2014/CR-html5-20140204/
http://www.dotnetblogengine.net
http://www.dotnetblogengine.net
http://www.blogsa.net/
http://cs.ucsb.edu/~bboe/r/ictf10

Bibliography

[22] B. Boe. Using StackOver ow's API to Find the Top Web Framorks.
http://cs.ucsb.edu/ ~ bboe/r/top-web-frameworks , Feb. 2011.

[23] B. W. Boehm. Software Engineering Economicsrentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1981.

[24] BugTracker.NET - Free Bug Tracking. http://ifdefined.com/
bugtrackernet.ntmi , 2013.

[25] Top in Frameworks - Week beginning Jun 24th 201Bttp://trends.
builtwith.com/framework , 2013.

[26] D. Byrne. Grendel-Scarhttp://www.grendel-scan.com/

[27] Include exit with a redirect call.http://replay.web.archive.org/
20061011152124/nttps://trac.cakephp.org/ticket/1076 ,
Aug. 2006.

[28] docs should mention redirect does not “exit” a scrigtttp://replay.
web.archive.org/20061011180440/https://trac.cakephp
org/ticket/1358 , Aug. 2006.

[29] Cake Software Foundation, Inc. The CakePHP 1.3 Bob#p://book.
cakephp.org/view/982/redirect , 2011.

[30] L. Carettoni and S. Di Paola. HTTP Parameter PollutiddWASP AppSec
Europe 2009, May 2009.

[31] A. Chaudhuri and J. Foster. Symbolic Security Analygi®uby-on-Rails Web
Applications. InProceedings of the ACM Conference on Computer and Com-
munications Security (CC33010.

[32] N. Childers, B. Boe, L. Cavallaro, L. Cavedon, M. Cova,Bele, and G. Vigna.
Organizing large scale hacking competitions Pioceedings of the Conference
on Detection of Intrusions and Malware, and Vulnerabiligs&ssment (DIMVA)
2010.

[33] Chinotec Technologies. Pardstp://www.parosproxy.org/

[34] S. Chong, K. Vikram, and A. Myers. SIF: Enforcing conmkgality and in-
tegrity in web applications. IRroceedings of the USENIX Security Symposium
(USENIX) 2007.

202

http://cs.ucsb.edu/~bboe/r/top-web-frameworks
http://ifdefined.com/bugtrackernet.html
http://ifdefined.com/bugtrackernet.html
http://trends.builtwith.com/framework
http://trends.builtwith.com/framework
http://www.grendel-scan.com/
http://replay.web.archive.org/20061011152124/https://trac.cakephp.org/ticket/1076
http://replay.web.archive.org/20061011152124/https://trac.cakephp.org/ticket/1076
http://replay.web.archive.org/20061011180440/https://trac.cakephp.org/ticket/1358
http://replay.web.archive.org/20061011180440/https://trac.cakephp.org/ticket/1358
http://replay.web.archive.org/20061011180440/https://trac.cakephp.org/ticket/1358
http://book.cakephp.org/view/982/redirect
http://book.cakephp.org/view/982/redirect
http://www.parosproxy.org/

Bibliography

[35] Chronozoom - A Brief History of the World. http://chronozoom.
cloudapp.net/firstgeneration.aspx , 2013.

[36] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. $dier: An Ap-
proach for the Anomaly-based Detection of State Violationgveb Applica-
tions. InProceedings of the Symposium on Recent Advances in ImrDgitec-
tion (RAID), 2007.

[37] C. Csallner, Y. Smaragdakis, and T. Xie. DSD-CrashehyArid analysis tool
for bug nding. ACM Transactions on Software Engineering and Methodology
(TOSEM) 17(2):1-37, 2008.

[38] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking RootkioEprints with a
Practical Memory Analysis System. Rroceedings of the USENIX Security
Symposium (USENIX2012.

[39] M. Curphey and R. Araujo. Web Application Security Assment ToolsIEEE
Security and Privacy4(4):32—-41, 2006.

[40] CVE. Common Vulnerabilities and Exposurdgtp://www.cve.mitre.
org .

[41] CVE Details. Vulnerabilities by Typehttp://www.cvedetails.com/
vulnerabilities-by-types.php , 2013.

[42] G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana] & De Carlini.
WARE: a tool for the Reverse Engineering of Web applicatioirs Proceed-
ings of the European Conference on Software MaintenanceRasshgineering
(CSMR) 2002.

[43] E.W. Dijkstra. A Note on Two Problems in Connexion withaphs.Numerische
Mathematik 1:269-271, 1959.

[44] Django. http://djangoproject.com , 2013.

[45] Django Software Foundation. Django shortcut funcsion http://
docs.djangoproject.com/en/dev/topics/http/shortcuts 1#
django.shortcuts.redirect , 2011.

[46] Ecma International. ECMAScript: A general purpose,oss-platform
programming language. http://www.ecma-international.
org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st
%20edition,%20June%201997.pdf , June 1997.

203

http://chronozoom.cloudapp.net/firstgeneration.aspx
http://chronozoom.cloudapp.net/firstgeneration.aspx
http://www.cve.mitre.org
http://www.cve.mitre.org
http://www.cvedetails.com/vulnerabilities-by-types.php
http://www.cvedetails.com/vulnerabilities-by-types.php
http://djangoproject.com
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf

Bibliography

[47] EllisLab, Inc. Codelgniter User Guide Version 2.0.2. http://
codeigniter.com/user_guide/helpers/url_helper.html ,
2011.

[48] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vignha. dahAutomated Detec-
tion of Logic Vulnerabilities in Web Applications. IRroceedings of the USENIX
Security Symposium (USEN|2010.

[49] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masintd. Leach, and
T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol — AMLTL.http://
www.w3.org/Protocols/rfc2616/rfc2616.html , June 1999.

[50] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinté. Leach, and
T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol — A/MTL
Header Field De nitionshttp://www.w3.org/Protocols/rfc2616/
rfc2616-secl4.html#sec14.30 , June 1999.

[51] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinté®. Leach, and
T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol — AMTL Sta-
tus Code De nitions. http://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html , June 1999.

[52] M. Fossi. Symantec Global Internet Security Threat&tepTechnical report,
Symantec, Apr. 2009. Volume XIV.

[53] Foundstone. Hacme Bank v2.0http://www.foundstone.com/us/
resources/proddesc/hacmebank.htm , May 2006.

[54] M. Furr, J. hoon (David) An, J. S. Foster, and M. Hicks.eTRuby Intermediate
Language. IProceedings of the ACM SIGPLAN Dynamic Languages Sympo-
sium (DLS) 20009.

[55] Gargoyle Software Inc. HtmlUnit.http://htmlunit.sourceforge.
net/ .

[56] J. J. Garrett. Ajax: A New Approach to Web Applicationsttp://www.
adaptivepath.com/ideas/essays/archives/000385.php , Feb.
2005.

[57] GitHub. http://github.com

[58] Google. Google AutoEscape for CTemplatétp://code.google.com/
p/ctemplate/

204

http://codeigniter.com/user_guide/helpers/url_helper.html
http://codeigniter.com/user_guide/helpers/url_helper.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.foundstone.com/us/resources/proddesc/hacmebank.htm
http://www.foundstone.com/us/resources/proddesc/hacmebank.htm
http://htmlunit.sourceforge.net/
http://htmlunit.sourceforge.net/
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://github.com
http://code.google.com/p/ctemplate/
http://code.google.com/p/ctemplate/

Bibliography

[59] J. Grossman. Challenges of Automated Web Applicaticem@ing, 2004.

[60] M. V. Gundy and H. Chen. Noncespaces: Using Randonaiaati Enforce Infor-
mation Flow Tracking and Thwart Cross-Site Scripting Akiacln Proceedings
of the Symposium on Network and Distributed System Se¢NItgS) 2009.

[61] W. G. Halfond, S. R. Choudhary, and A. Orso. Penetrafiesting with Im-
proved Input Vector Identi cation. IfProceedings of the IEEE International
Conference on Software Testing, Veri cation and ValidatftCST) 2009.

[62] O. Hallaraker and G. Vigna. Detecting Malicious Jay@@dcCode in Mozilla. In
Proceedings of the IEEE International Conference on Engjiimg of Complex
Computer Systems (ICECCSPO05.

[63] R. Hansen. Clickjacking.http://ha.ckers.org/blog/20080915/
clickjacking/ , Sept. 2008.

[64] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and &h@&enk. Scriptless
Attacks: Stealing the Pie Without Touching the Sill. Rroceedings of the ACM
Conference on Computer and Communications Security ((ZD&P.

[65] J. Hoff. WebGoat.NEThttps://github.com/jerryhoff/WebGoat.

NET, 2013.

[66] D. Hofstetter. Dont forget to exit after a redirect.
http://cakebaker.wordpress.com/2006/08/28/
dont-forget-to-exit-after-a-redirect/ , Aug. 2006.

[67] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and\¥anes. Fast and Pre-
cise Sanitizer Analysis with B<. In Proceedings of the USENIX Security Sym-
posium (USENIX)2011.

[68] J. hoon An, A. Chaudhuri, and J. Foster. Static TypingRoby on Rails. In
Proceedings of the IEEE/ACM Conference on Automated Seftiragineering
(ASE) 2009.

[69] M. Howard and D. LeBlanc.Writing Secure Code Microsoft Press, second
edition, 2003.

[70] HP. Weblnspect. https://download.hpsmartupdate.com/
webinspect/

205

http://ha.ckers.org/blog/20080915/clickjacking/
http://ha.ckers.org/blog/20080915/clickjacking/
https://github.com/jerryhoff/WebGoat.NET
https://github.com/jerryhoff/WebGoat.NET
http://cakebaker.wordpress.com/2006/08/28/dont-forget-to-exit-after-a-redirect/
http://cakebaker.wordpress.com/2006/08/28/dont-forget-to-exit-after-a-redirect/
https://download.hpsmartupdate.com/webinspect/
https://download.hpsmartupdate.com/webinspect/

Bibliography

[71] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Wapplication Security
Assessment by Fault Injection and Behavior MonitoringPoceedings of the
International World Wide Web Conference (WWR003.

[72] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, andYSKuo. Securing
Web Application Code by Static Analysis and Runtime Pratectin Proceed-
ings of the International World Wide Web Conference (W\V\2004.

[73] IBM. AppScan. http://www-01.ibm.com/software/awdtools/
appscan/ .

[74] Indictment in U.S. v. Albert Gonzalez. http://www.justice.
gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-
%20Indictment%20080508.pdf , Aug. 2008.

[75] T. R. Jensen and B. ToftGraph Coloring ProblemsWiley-Interscience Series
on Discrete Mathematics and Optimization. Wiley, 1994.

[76] M. Jewell. Data Theft Believed to Be Biggest HacRhe Washington Post
Mar. 29, 2007.

[77] T. Jim, N. Swamy, and M. Hicks. Defeating Script Injecti Attacks with
Browser-Enforced Embedded Policies. MRmoceedings of the International
World Wide Web Conference (WW)\2007.

[78] M. Johns and C. Beyerlein. SMask: Preventing Injecdtacks in Web Appli-
cations by Approximating Automatic Data/Code SeparationProceedings of
the ACM Symposium on Applied Computing (SAR0D7.

[79] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Statica#ysis Tool for Detect-
ing Web Application Vulnerabilities (Short Paper). Pmoceedings of the IEEE
Symposium on Security and Priva@p06.

[80] N.Jovanovic, C. Kruegel, and E. Kirda. Precise Aliasshsis for Static Detec-
tion of Web Application Vulnerabilities. I#roceedings of the ACM SIGPLAN
Workshop on Programming Languages and Analysis for Sgo{iritAS) 2006.

[81] N. Jovanovic, C. Kruegel, and E. Kirda. Static analyeisdetecting taint-style
vulnerabilities in web applicationsJournal of Computer Security.8(5):861—
907, 2010.

[82] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBaiVeb Vulnerabil-
ity Scanner. InProceedings of the International World Wide Web Conference
(WWW) 2006.

206

http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf

Bibliography

[83] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. NoxésClient-Side So-
lution for Mitigating Cross-Site Scripting Attacks. FProceedings of the ACM
Symposium on Applied Computing (SAZ)O06.

[84] J. Kirk. BitCoin exchange loses $250,0000 after ungpimd keys stolen.
http://www.computerworld.com/s/article/9230919/
BitCoin_exchange_loses 250 _0000_after_unencrypted_
keys stolen , Sept. 5, 2012.

[85] A. Klein. “Divide and conquer”: HTTP Response SpliginVeb Cache Poison-
ing Attacks, and Related Topichkttp://www.packetstormsecurity.
org/papers/general/whitepaper/httpresponse.pdf , 2004.

[86] A.Klein. DOM Based Cross Site Scripting or XSS of the fihKind. http://
www.webappsec.org/projects/articles/071105.shtml , 2005.

[87] D. Kristol and L. Montulli. RFC 2109: HTTP State Managem Mechanism.
http:/iwww.w3.org/Protocols/rfc2109/rfc2109 , Feb. 1997.

[88] X.LiandY. Xue. BLOCK: A Black-box Approach for Detecin of State Viola-
tion Attacks Towards Web Applications. Rroceedings of the Annual Computer
Security Applications Conference (ACSAZ)11.

[89] X. Li, W. Yan, and Y. Xue. SENTINEL: Securing Databaserfr Logic Flaws
in Web Applications. InProceedings of the ACM Conference on Data and Ap-
plication Security and Privacy (CODASR2012.

[90] B. Livshits and S. Chong. Towards Fully Automatic Plaent of Security San-
itizers and Declassi ers. IRroceedings of the Symposium on Principles of Pro-
gramming Languages (POPL3013.

[91] B. Livshits and U. Erlingsson. Using Web Application@ruction Frameworks
to Protect Against Code Injection Attacks.Pnoceedings of the ACM SIGPLAN
Workshop on Programming Languages and Analysis for SgoiritAS) 2007.

[92] V. B. Livshits and M. S. Lam. Finding Security Vulnerébes in Java Applica-
tions with Static Analysis. IfProceedings of the USENIX Security Symposium
(USENIX) 2005.

[93] M. T. Louw and V. Venkatakrishnan. BIEEPRINT: Robust Prevention of Cross-
site Scripting Attacks for Existing Browsers. Rroceedings of the IEEE Sym-
posium on Security and Privac009.

207

http://www.computerworld.com/s/article/9230919/BitCoin_exchange_loses_250_0000_after_unencrypted_keys_stolen
http://www.computerworld.com/s/article/9230919/BitCoin_exchange_loses_250_0000_after_unencrypted_keys_stolen
http://www.computerworld.com/s/article/9230919/BitCoin_exchange_loses_250_0000_after_unencrypted_keys_stolen
http://www.packetstormsecurity.org/papers/general/whitepaper/httpresponse.pdf
http://www.packetstormsecurity.org/papers/general/whitepaper/httpresponse.pdf
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://www.w3.org/Protocols/rfc2109/rfc2109

Bibliography

[94] M. Martin and M. S. Lam. Automatic Generation of XSS an@QLSInjection
Attacks with Goal-Directed Model Checking. Proceedings of the USENIX
Security Symposium (USEN/|2008.

[95] S. McAllister, C. Kruegel, and E. Kirda. Leveraging Wdrteractions for In-
Depth Testing of Web Applications. roceedings of the Symposium on Recent
Advances in Intrusion Detection (RAI2008.

[96] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling AJAXriferring User
Interface State Changes. Pmoceedings of the International Conference on Web
Engineering (ICWE)2008.

[97] L. Meyerovich and B. Livshits. ConScript: Specifyingidh Enforcing Fine-
Grained Security Policies for JavaScript in the BrowserPtaceedings of the
IEEE Symposium on Security and Priva2@10.

[98] Microsoft. ASP.NET.http://www.asp.net/

[99] Microsoft Research. Common Compiler Infrastructurip://research.
microsoft.com/en-us/projects/cci/ , 2013.

[100] Y. Nadiji, P. Saxena, and D. Song. Document Structuleghity: A Robust Basis
for Cross-Site Scripting Defense. Rroceedings of the Symposium on Network
and Distributed System Security (NDS&)08.

[101] A. Nguyen-tuong, S. Guarnieri, D. Greene, and D. Evakgomatically Hard-
ening Web Applications Using Precise Tainting. Pmoceedings of the IFIP
International Information Security Conferen@905.

[102] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, Sor8an, L. Youseff, and
D. Zagorodnov. The Eucalyptus Open-Source Cloud-Comgusiystem. In
Proceedings of the IEEE/ACM International Symposium orsteluCloud and
Grid Computing (CCGRID)2009.

[103] Open Security Foundation. OSF DataLossDB: Data Lossd\l Statistics, and
Researchhttp://datalossdb.org/

[104] Open Web Application Security Project (OWASP). OWASReGenerator.
http:/www.owasp.org/index.php/OWASP_SiteGenerator

[105] Open Web Application Security Project (OWASP). OWA®BRbGoat Project.
http://www.owasp.org/index.php/Category: OWABRbGoatProject.

208

http://www.asp.net/
http://research.microsoft.com/en-us/projects/cci/
http://research.microsoft.com/en-us/projects/cci/
http://datalossdb.org/
http://www.owasp.org/index.php/OWASP_SiteGenerator

Bibliography

[106] Open Web Application Security Project (OWASP). WepuhVector Extractor
Teaser http://code.google.com/p/wivet/

[107] Open Web Application Security Project (OWASP). OWAS6p Ten Project.
http://www.owasp.org/index.php/Top_10 , 2010.

[108] OpenID Foundation. Openlittp://openid.net/

[109] C. Ortiz. Outcome of sentencing in U.S. v. Albert Gdeza http://www.
justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZAL EZ
%20website%20inf0%205-11-10.pdf , Mar. 2010.

[110] PCI Security Standards Council. PCI DDS Requiremants Security Assess-
ment Procedures, v1.2, Oct. 2008.

[111] H. Peine. Security Test Tools for Web Applications.cfieical Report 048.06,
Fraunhofer IESE, Jan. 2006.

[112] T. Pietraszek and C. V. Berghe. Defending againstctiga Attacks through
Context-Sensitive String Evaluations. Proceedings of the Symposium on Re-
cent Advances in Intrusion Detection (RAJ2P05.

[113] PortSwigger. Burp Proxyhttp://www.portswigger.net/burp/

[114] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrosel Yalur iFRAMEs
Point to Us. InProceedings of the USENIX Security Symposium (USENIX)
2008.

[115] S. Raghavan and H. Garcia-Molina. Crawling the Hidieb. InProceedings
of the International Conference on Very Large Data Base<®/),. 2001.

[116] T. Reenskaug. Models - views - controllers. Techniepbrt, Xerox Parc, 1979.

[117] A. Riancho. w3af — Web Application Attack and Audit Rrawork. http://
wa3af.sourceforge.net/

[118] W. RobertsonDetecting and Preventing Attacks Against Web Applicati&h®
thesis, University of California, Santa Barbara, June 2009

[119] W. Robertson and G. Vigna. Static Enforcement of Welpligation Integrity
Through Strong Typing. IProceedings of the USENIX Security Symposium
(USENIX) 2009.

[120] Ruby on Railshttp://rubyonrails.org/ , 2013.

209

http://code.google.com/p/wivet/
http://www.owasp.org/index.php/Top_10
http://openid.net/
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.portswigger.net/burp/
http://w3af.sourceforge.net/
http://w3af.sourceforge.net/
http://rubyonrails.org/

Bibliography

[121] RSnake. Sqgl injection cheat sheet. http://ha.ckers.org/
sqglinjection/

[122] RSnake. XSS (Cross Site Scripting) Cheat Shagp://ha.ckers.org/
xss.html

[123] M. Samuel, P. Saxena, and D. Song. Context-Sensitiv®-Sanitization in
Web Templating Languages Using Type Quali ers.Aroceedings of the ACM
Conference on Computer and Communications Security ((ZD®]1.

[124] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamantPai@bng. A Sym-
bolic Execution Framework for JavaScript. Pnoceedings of the IEEE Sympo-
sium on Security and Privacf2010.

[125] P. Saxena, D. Molnar, and B. Livshits. CRIPTGARD: Automatic Context-
Sensitive Sanitization for Large-Scale Legacy Web Appiwe. InProceed-
ings of the ACM Conference on Computer and CommunicationgiBe(CCS)
2011.

[126] D. Scott and R. Sharp. Abstracting Application-Lewdb Security. IrlProceed-
ings of the International World Wide Web Conference (WV\2002.

[127] ScrewTurn Wiki.http://www.screwturn.eu/ , 2013.

[128] S. Small, J. Mason, F. Monrose, N. Provos, and A. Seiblil. To Catch a
Predator: A Natural Language Approach for Eliciting Madies Payloads. In
Proceedings of the USENIX Security Symposium (USEIQDOS8.

[129] SPI Dynamics. Complete Web Application Security: $ha — Building Web
Application Security into Your Development Process. SPh&yics Whitepa-
per, 2002.

[130] SpringSource. Contollers - Redirects. http://www.grails.org/
Controllers+-+Redirects , 2010.

[131] S. Stamm, B. Sterne, and G. Markham. Reining in the Wiéb@ontent Security
Policy. InProceedings of the International World Wide Web Conferéidé@/\W)
2010.

[132] C. Steve and R. Martin. Vulnerability Type Distriboris in CVE. Mitre report,
May, 2007.

210

http://ha.ckers.org/sqlinjection/
http://ha.ckers.org/sqlinjection/
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://www.screwturn.eu/
http://www.grails.org/Controllers+-+Redirects
http://www.grails.org/Controllers+-+Redirects

Bibliography

[133] Z. Su and G. Wassermann. The Essence of Command brmettacks in Web
Applications. InProceedings of the Symposium on Principles of Programming
Languages (POPL.R006.

[134] L. Suto. Analyzing the Effectiveness and Coverage ebWpplication Security
Scanners. Case Study, Oct. 2007.

[135] L. Suto. Analyzing the Accuracy and Time Costs of WelpAgation Security
Scanners, Feb. 2010.

[136] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O.i8%@an. TAJ: Effective
Taint Analysis of Web Applications. IRroceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implement@dbbl), 2009.

[137] A.van Kesteren and D. Jackson. The XMLHttpRequeseCtipttp://www.
w3.0rg/TR/2006/WD-XMLHttpRequest-20060405/ , Apr. 2006.

[138] M. Vieira, N. Antunes, and H. Madeira. Using Web Segu8canners to Detect
Vulnerabilities in Web Services. IRroceedings of the Conference on Depend-
able Systems and Networks (DSRD09.

[139] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruggmnd G. Vigna. Cross-
Site Scripting Prevention with Dynamic Data Tainting andtstAnalysis. In
Proceedings of the Symposium on Network and Distributete®ySecurity
(NDSS) 2007.

[140] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to Shopres Pnline -
Security Analysis of Cashier-as-a-Service Based Web StdndProceedings of
the IEEE Symposium on Security and Privia2g11.

[141] G. Wassermann and Z. Su. Sound and Precise AnalysigbfAfiplications for
Injection Vulnerabilities. InProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLROO7.

[142] J. Weinberger, A. Barth, and D. Song. Towards CliedesHTML Security
Policies. InProceedings of the USENIX Workshop on Hot Topics in Security
(HotSec) 2011.

[143] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, RinSland D. Song. A
Systematic Analysis of XSS Sanitization in Web Applicatierameworks. In
Proceedings of the European Symposium on Research in Cengrdurity (ES-
ORICS) 2011.

211

http://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/
http://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/

Bibliography

[144]

[145]

[146]

[147]

A. Wiegenstein, F. Weidemann, M. Schumacher, and Bin8el. Web Appli-
cation Vulnerability Scanners—a Benchmark. Technicabrepvirtual Forge
GmbH, Oct. 2006.

Y. Xie and A. Aiken. Static Detection of Security Vuladbilities in Script-
ing Languages. IiProceedings of the USENIX Security Symposium (USENIX)
2006.

F. Yu, M. Alkhalaf, and T. Bultan. 8RANGER: An Automata-based String
Analysis Tool for PHP. IrProceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Syst@AE€AS) 2010.

Zend Technologies Ltd. Zend Framework: Documentatio Action
Helpers - Zend Framework Manualhttp://framework.zend.com/
manual/en/zend.controller.actionhelpers.html#zend.
controller.actionhelpers.redirector , 2011.

212

http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Listings
	Introduction
	History of Web Applications
	Web Application Vulnerabilities
	Injection Vulnerabilities
	Logic Flaws

	Securing Web Applications
	Anomaly Detection
	Vulnerability Analysis Tools

	Securing the Web

	Related Work
	Evaluating Black-Box Web Vulnerability Scanners
	Black-Box Vulnerability Scanners
	Automated Discovery of Logic Flaws
	Cross-Site Scripting Defense
	Server-Side Methods
	Client-Side Methods

	An Analysis of Black-Box Web Application Vulnerability Scanners
	Background
	Web Application Vulnerabilities
	Web Application Scanners

	The WackoPicko Web Site
	Design
	Vulnerabilities
	Crawling Challenges

	Experimental Evaluation
	Setup
	Detection Results
	Attack and Analysis Capabilities
	Crawling Capabilities

	Lessons Learned
	Conclusions

	A State-Aware Black-Box Web Vulnerability Scanner
	Motivation
	State-Aware Crawling
	Web Applications
	Inferring the State Machine

	Technical Details
	Clustering Similar Pages
	Determine the State-Changing Request
	Collapsing Similar States
	Navigating

	State-Aware Fuzzing
	Evaluation
	Experiments
	Results

	Limitations
	Conclusion

	Discovering and Mitigating Execution After Redirect Vulnerabilities
	Overview of EARs
	EAR History
	EARs as Logic Flaws
	Types of EARs
	Framework Analysis
	EAR Security Challenge

	EAR Detection
	Detection Algorithm
	Limitations

	Results
	Detection Effectiveness
	Performance

	Prevention
	Conclusions

	Toward Preventing Server-Side XSS via Automatic Code and Data Separation
	Background
	Cross-Site Scripting
	Code and Data Separation
	Content Security Policy

	Threat Model
	Design
	Example
	Approximating HTML Output
	Extracting Inline JavaScript
	Application Rewriting
	Dynamic Inline JavaScript
	Generality

	Implementation
	Evaluation
	Applications
	Security
	Functional Correctness
	Performance
	Discussion

	Limitations
	Conclusion

	Conclusions

