
Shell We Play A Game? CTF-as-a-service for Security Education

Erik Trickel†, Francesco Disperati‡, Eric Gustafson‡, Faezeh Kalantari†, Mike Mabey†,
Naveen Tiwari†, Yeganeh Safaei†, Adam Doupé†, and Giovanni Vigna‡

†Arizona State University ‡University of California, Santa Barbara
†{etrickel, fkalentari, mmabey, nktiwar1, ysafaei, doupe}@asu.edu

‡{francesco, edg, vigna}@cs.ucsb.edu

Abstract

Although we are facing a shortage of cybersecurity profes-
sionals, the shortage can be reduced by using technology to
empower all security educators to efficiently and effectively
educate the professionals of tomorrow. One powerful tool
in some educators’ toolboxes are Capture the Flag (CTF)
competitions. Although participants in all the different types
of CTF competitions learn and grow their security skills,
Attack/Defense CTF competitions offer a more engaging
and interactive environment where participants learn both
offensive and defensive skills, and, as a result, they develop
their skills even faster. However, the substantial time and
skills required to host a CTF, especially an Attack/Defense
CTF, is a huge barrier for anyone wanting to organize one.
Therefore, we created an on-demand Attack/Defense tool
via an easy-to-use website that makes the creation of an
Attack/Defense CTF as simple as clicking a few buttons. In
this paper, we describe the design and implementation of our
system, along with lessons learned from using the system
to host a 24-hour 317 team Attack/Defense CTF.

1 Introduction

We are facing a cybersecurity crisis because the demand
for cybersecurity professionals is growing exponentially
and the supply-side is unable to create enough qualified
professionals [30]. In fact, the 2015 (ISC)2 Global
Information Security Workforce Study predicts a shortfall
of 1.5 million global information security jobs by 2020 [32].
The lack of a qualified cybersecurity workforce gives rise to
high-profile security incidents, such as the Office of Personal
Management data breach, where hackers stole 21 million
files containing sensitive background check information [23].
In addition, attacks against the nation’s critical infrastructure
could have devastating effects that go well beyond the
financial losses we are witnessing today.

Over the last thirty years, the world of hacking has mor-
phed from an idealistic place populated by young and curious

explorers who only wanted to hack the planet and keep the
world of electrons free for all1 into a world-wide battlefield in
which nation-states and criminal organizations launch attacks
to access and control the flow of information. As a result,
modern attackers have gone from a chaotic group seeking to
explore their digital world to highly sophisticated and coordi-
nated actors that patiently wait for the optimal moment to en-
gage their enemies. Modern hackers leverage vulnerabilities
on one system to compromise another, and then, as stealthily
as possible, they slowly exfiltrate the data they seek and elim-
inate any evidence of their activity. This metamorphosis of
the hacking world demands an equal rise in the skills of secu-
rity professionals and security-minded developers. Therefore,
we must train the next generation of security professionals
who will secure the software systems that run companies,
organizations, and the nation’s critical infrastructure.

Growing the cybersecurity workforce is a challenging
problem because the knowledge and skills are a complex and
constantly moving target. Solving security problems requires
strong objective critical thinking skills [14,25,39]. In other
words, developers must learn to think like the attackers and
then learn to defend against those attacks and exploits. Al-
though studying vulnerabilities and their abstract patterns pro-
vides a theoretical start, it is not enough—hands-on practice
is crucial for mastering the highly-complex theoretical con-
cepts involved in cybersecurity [37]. Solving real problems
in small cooperative groups can greatly improve knowledge
acquisition [28]. In addition, gamification of the learning
experience also produces several positive effects [19]. Thus,
it is not surprising that live cybersecurity competitions,
which take advantage of those ideas, are on the rise.

Attack/Defense Capture the Flag events (ADCTFs) are
a type of live cybersecurity competition that attempts to
maximize the learning for the competitors. In an ADCTF,
the participants practice finding vulnerabilities, developing
exploits, and defending against exploits. Additionally, the

1See Loyd Blankenship’s essay The Conscience of a Hacker, aka The
Hacker’s Manifesto, which he said he wrote to describe the essence of
“what [hackers] were doing and why we were doing it” [10,38].



competitors are often in teams, which further increases
their learning [24,28]. Beyond the learning that takes place
during the competition, many competitors also experience
significant learning in preparing for the competition and
creating write-ups after it concludes [12].

Although organizing and running challenge-based
competitions is relatively simple2, organizing and running
an ADCTF competition requires a significant amount of
time and a broad range of skills. An ADCTF organizer must
spend a large amount of time to meticulously build a secure
infrastructure for hosting the game. Moreover, the organizer
must develop some type of application that securely controls
the game and scores the participants’ activities. All of this
means that an organizer must be an expert in operating
systems, networking, application development, and server
administration to successfully organize and host an ADCTF.

To address this pressing need, we relied on our experience
gained over the last fourteen years hosting ADCTFs and
created a CTF-as-a-Service platform, which is now available
at https://ShellWePlayAGame.org (SWPAG) and the
source code is available on GitHub [22]. On SWPAG,
anyone can organize and host their own ADCTF. After
filling out the proper information, a completely configured
and stable ADCTF is created in a cloud environment, thus
relieving the organizer of the operating system, networking,
and server administration burden. Our goal is that SWPAG
will empower all security educators, even those with limited
network or administrative skills, to easily host their own
ADCTF for educational purposes.

2 Background and Motivation

Live cybersecurity exercises benefit the security community
in several ways. First, the exercises allow the participants
to practice the theory and concepts they have acquired
from books and articles [35]. Second, the real-time aspect
of a finite event that occurs for a limited amount of time
and the competitive-drive of the participants improves
learning [19]. Third, live cybersecurity exercises provide
a deeper engagement and increase academic learning
time, which results in faster learning and mastery of the
concepts [16,17,33]. Fourth, the participants learn how to
operate in a dynamic setting, having to react to attacks by
developing, on the spot, defenses and countermeasures. Last,
the events allow participants to showcase their skills.

Collectively, we have been organizing, running, and com-
peting in cybersecurity competitions for many years. From
this unique vantage point, we have seen first-hand the effect
that live cybersecurity competitions have on the participants,
who are driven to invest a substantial amount of resources
in preparing, executing, and post-evaluating. Preparation

2In fact, there are only a handful of ADCTFs, while most available
competitions are challenge-based [8].

includes classroom learning, peer teaching, independent
study, and the creation of novel tools. Execution requires
them to think critically and generalize their theoretical
knowledge while having to react, in real time, to unexpected
circumstances. The post-evaluating entails objectively
evaluating their performance, discussing the effectiveness of
their attack and defense mechanisms, and studying solutions
to the problems they could not solve. Many participants learn
even more by taking the time to write blog posts that discuss
their lessons learned, the details of how they found and
eventually exploited the vulnerability, and their strategy and
approach to the competition. As a result, these participants
have a tendency to grow and improve after every event.

The first cybersecurity competition was held in 1996 at
DEF CON [20]. The early DEF CON competitions were in
what is now considered a challenge style using a single host
with custom-written vulnerable services. The participants
would discover vulnerabilities in each service and then prove
it by crafting an exploit. Even though this style of event
focuses purely on offensive skills, it is still an excellent way
for participants to practice and refine their security skills.

The next iteration of CTF competitions allowed partic-
ipants to refine both their offensive and defensive skills:
Attack/Defense Capture the Flag events. This type of event
is an interactive competition in which each team receives
an identical machine that is running vulnerable services. The
competitors then use their security skills to protect their own
services while simultaneously trying to break into the same
services on their opponents’ machine. Once successful, the
competitors must obtain proof that they succeeded at exploit-
ing an opponent’s service by gaining access to a unique piece
of data referred to as a flag. With this flag in their virtual
hand, they must then turn it in to a scorekeeper for points.
ADCTFs are a fun and exciting way for security researchers
to showcase, enhance, and refine their security skills while
also competing with one another for fame and glory.

Since 2003, we have hosted the international Capture
the Flag (iCTF) competition, which was not only one of
the first ADCTFs but is now one of the largest [37]. We
have continued to host the iCTF every year since then (the
most recent edition was in March of 2017). Each year,
we experiment with various designs and approaches to the
game [12,15,31,34,36].

After running the competition for fourteen years, we recog-
nized that many of the game infrastructure components were
reused year after year [37]. Therefore, in August 2014, the
UCSB SecLab released an open-source framework for host-
ing interactive CTF competitions with the hopes of easing
the burden on other ADCTF organizers and to give educators
access to an ADCTF competition for their classroom [22].
By abstracting the common infrastructure (starting services,
scoring, service checking, VM creation) and by defining
a common interface to create services, the authors enabled
anyone, with significant manual effort, to create and host an

2

https://ShellWePlayAGame.org


ADCTF-like competition. Even though the iCTF framework
provides the components necessary to run an ADCTF event,
their setup and configuration is far from trivial. An organizer
must still spend a significant amount of time understanding
how the components work. After that, she must create the
network, take the time to deploy the machines, and create
and install vulnerable services. In addition, an organizer
must debug any components that fail to work properly, which
can involve investigating the database, finding the various
log files on each of the machines, and even patching bugs.
Thus, the technical barrier to adoption is still substantial
because the would-be organizers must understand a great
deal about networking, server administration, network
security, application development, and application security.

This led us to realize that the community would benefit
greatly from a turn-key solution. To validate this conclusion,
we surveyed the teams that participated in our competition in
2015. We asked them “If you could press a button on a web-
site to automatically host your own CTF competition, with
no technical setup on your part, would you or your group use
it?” 31 out of the 36 responders answered that they would.

All of this pushed us toward taking the open source
platform to the next level and offer it as an easy-
to-use service; thus, now we are proud to present
our CTF-as-a-Service solution, which is available at
https://ShellWePlayAGame.org (SWPAG). SWPAG
offers the capability to launch an ADCTF that leverages
the computing resources of the cloud. After entering some
information and clicking a few buttons, an organizer launches
a CTF instance, which is created and configured within a
few minutes on Amazon’s Web Services platform (AWS).

3 Design of the CTF-as-a-Service

While the SWPAG website acts as the front-end for users to
configure an ADCTF, behind the SWPAG website the CTF-
as-a-Service platform has one master controller called the
Games Controller (GC), which is responsible for managing
all of the CTF instances (see Figure 1). A CTF instance is
the logical space containing all the virtual machines (VMs)
necessary to run a single ADCTF event. In this section, we
describe the GC and the CTF instance components.

3.1 The Games Controller
The SWPAG website is the web front-end that organizers use
to manage events. An organizer can be anyone—including
students, educators, CTF teams, or organizations. Initially,
an organizer must create an account. After creating an
account, she may create a new CTF instance and modify
any of the settings. The organizer may choose to select
intentionally-vulnerable services from a library of existing
services and eventually may write and upload her own vul-
nerable services, which will then become a part of the library

Figure 1: CTF-as-a-Service Overview.

and available to other educators3. In addition, the organizer
chooses various parameters for the competition, such as the
number of teams, the members of the teams, the game start
time and duration, and so on. Next, the organizer provides
credentials for a valid account on Amazon Web Services
(AWS), which is currently the only cloud service provider
that is compatible with the platform. Once setup is complete,
the teams wishing to participate in an event can register for
it. When the organizer is ready, she clicks a button to launch
the CTF instance and the GC takes care of the rest.

The GC is responsible for creating, managing, and
terminating all the CTF instances. Using the supplied
credentials, the GC accesses the AWS account and creates
a Virtual Private Cloud (VPC) for each CTF instance. VPCs
are a networking feature of AWS that enable the provisioning
of a logically isolated section of AWS’s cloud [6]. Within
the VPC, the GC has full control of the IP addresses of the
servers and the network routing between them. The VPC
is configured to keep all network traffic within it, and, as
a result, the attacks launched during the competition cannot
affect external hosts. After the GC configures the VPC, it
creates the Game Master (GM).

3.2 The CTF Instance Components

The GM automates many of the difficult and time consuming
tasks. It is responsible for communicating with the GC and
for orchestrating the creation and management of the game.
After the GM’s creation is complete, it starts by configuring
the CTF instance and then creating the Database, Router,
Gamebot, Scriptbot, Team Interface, Scoreboard and the
team VMs.

3Much like a riddle, the difficulty of exploiting a vulnerable service is in
its novelty, as such, the services stored in the library will be easier because
the prior contestants will often post their analysis and solutions. However,
even with leaked solutions, it is often still difficult for less experienced
students to successfully implement an exploit.

3

https://ShellWePlayAGame.org


The first component the GM instantiates is the Database.
The Database is the central component of the game’s
operation—stores all the information associated with the
competition (e.g., the flags submitted, the status of the
services for each round, and the team’s information). Being
the central component of the game, all the other components
access the database, except for the vulnerable team VMs.
The components access the Database over a private subnet
that is different from the one used by the team VMs. As
a result, the Database is inaccessible from the team VMs
or from the Internet. We limited access to the Database to
reduce the attack surface area of the game infrastructure. We
also designed it this way so that the unencrypted database
communications were protected because they only travel
over the private subnet.

The second component created by the GM is the
Router. The main purpose of the Router is to masquerade
transmissions to the team VMs, to capture the traffic,
and to act as a single entry point for the teams. First, it
forwards all team-to-team transmissions and official service
verification transmissions that verify each team’s service
is running properly. While forwarding these transmissions,
it anonymizes the packets by masquerading all the traffic
as itself. Thus, when a team receives a packet it has the
source IP of the Router. We designed it this way to prevent
teams from dropping traffic from their competitors while
allowing the service checks to get through. One interesting
development note is that this was not as straight forward
to setup as we thought because the AWS network prevents
masquerading by default [7]. To bypass this restriction, the
source/destination checking must be disabled.

The Router captures, stores, and potentially limits all
the traffic that it forwards (i.e., team-to-team and Scriptbot-
to-team traffic). Even limiting to only team-to-team and
Scriptbot-to-team traffic, the logs (in raw pcap format)
grow rather quickly. For example, for our most recent
competition the compressed traffic logs were more than
100GB. However, this competition was for 24 hours with
317 teams, so we expect SWPAG CTFs to have much less
traffic. Next, it limits the number of connections per second
each team may initiate to another team; however, it does not
limit the maximum number of connections a team may have
open concurrently. Once the Router creation completes, the
GM instantiates the Gamebot, Scriptbot, Scoreboard, Team
Interface, and the Teams’ VMs in parallel.

The Router is created with a static external IP, and it serves
as a single entry point for teams to access their VMs. It does
this by forwarding ports 1337 and higher to each team’s SSH
port. We chose to design the team’s access this way because
we found that stopped and started, recreated, or upgraded
team VMs would receive a different public IP address [2].
We could have designed it so that every team received a
static IP address, however (1) Amazon limits the number
that can be used per account and (2) we were unsure of how

many needed to be requested. The chosen port forwarding
method allows us to have 1,000 teams without needing to
request an increase in the number of static IP addresses.

The Gamebot is the heartbeat of the game. The game
duration is divided in ticks. A tick does not occur after a
fixed and constant amount of time, instead, it occurs after a
fixed amount of time plus a random adjustment. After each
tick, the prior round ends and a new round begins. At end
of a round, the Gamebot calculates the score for each team
based on their performance during the prior round.

The next component is Scriptbot. Prior to a game starting,
Scriptbot sits and waits for Gamebot to create the first tick of
the game. Once Scriptbot sees the first tick, it will tirelessly
test the teams’ services and update the flags on each team’s
VM every round. The test and update processes execute in
parallel, but to obfuscate itself and to spread out the load the
Scriptbot generates a randomized delay for every process
it must execute in a round. The maximum delay is set so
that Scriptbot will complete all the processes before the end
of the current round. In addition to the randomized delay,
Scriptbot accesses the team’s services via the Router, which
masquerades all the traffic, so that Scriptbot’s requests look
the same as the team-to-team traffic. After it executes each
process, Scriptbot updates the database with the results.

The Team Interface is both the keymaster and gatekeeper.
Using the Team Interface, the teams retrieve their private
SSH keys so that they can access their team’s VMs. The
Team Interface also allows them to retrieve a flag identifier
for the round. The flag identifier is a value that will help
them find the flag on their opponent’s machine. For example,
it might be name of the file they must look inside once
they exploit the associated service. In addition, the Team
Interface will provide each team with a unique flag token
so that they can submit a flag without needing to use their
username and password. Next, the Team Interface accepts
any flags that teams submit. To access the Team Interface,
the teams must retrieve a login access token and a flag
submission token from SWPAG. For more information on
the flag mechanisms, see the article Ten Years of iCTF: The
Good, The Bad, and The Ugly [37].

The last system component is the Scoreboard. The
Scoreboard provides feedback to the teams on their
performance. On the leaderboard section of the Scoreboard,
it displays each team’s score and a graph showing the
historical performance of the top teams. On the service list of
the Scoreboard, the status of the team services are shown, so
that the teams can evaluate if their security mechanisms are
affecting the functionality and availability of their services.

Next, GM creates a virtual machine on AWS for each
team. Although GM creates the instances in parallel, it
limits the number of concurrent requests to avoid receiving
a request rate limit exceeded error from AWS [1]. To
keep their system available for all their users, AWS has a

4



fluctuating request rate limit and if an account exceeds the
limit they receive the error4.

During the team VM creation process, the GM installs
and starts the vulnerable services chosen by the organizer.
It also configures the VMs with a static route that forces the
team-to-team traffic through the Router. If a team decides
to change or remove this static route (which they can do
because each team has root access to their own VM), then
they will be unable to communicate to the other teams
because direct team-to-team traffic is blocked by an AWS
security group (see Section 3.3 for additional details). Once
the GM completes instantiating and configuring a team’s
VM, GM tests the VM’s vulnerable services.

3.3 Network Configuration
Each CTF instance must have several network configuration
steps completed before a game can start. As mentioned previ-
ously, the GC creates a VPC. The new VPC is assigned an IP
address range of 172.31.0.0/16. Within the VPC, the GC cre-
ates two subnets. The first subnet is the Game Components
subnet, which is limited to 172.31.64.0/20. The Game Com-
ponents subnet contains all the game servers, GM, Database,
Gamebot, Scriptbot, Team Interface, and Scoreboard. The
second subnet created by GC is called the War Range subnet.
The GC defines the War Range subnet as 172.31.128.0/17.
The War Range contains the teams’ VMs. However, the GM
limits team IP addresses to 172.31.129.0/19, which means
it can currently only handle 8,190 machines, however the
largest ADCTF ever held had only 317 machines it should
be sufficient for the foreseeable future.

The Scriptbot is the only machine in the network that is
dual homed to both the Game Components and War Range
private subnets. The Scriptbot is dual homed so that it can
create a static route to the Router, which obfuscates its origin
while running its service tests on the team VMs.

For a virtual machine to be accessible, it must be asso-
ciated with an AWS security group. An AWS security group
is a virtual firewall that permits inbound and outbound traffic
based on the rules assigned to it [3]. The security groups re-
side on the network and are inaccessible to the VMs—in fact,
unlike a firewall running on a VM, packets not permitted by
a security group are dropped before ever reaching the VM.

The GM associates every virtual machine in a CTF in-
stance with one of four AWS security groups. The first group
protects the servers that are only internal. This group only
permits connections on ports 80 and 22 so long as the connec-
tions originate from the Game Components subnet. Similarly,
the web security group has the same restrictions except that it
allows Internet traffic to connect using ports 80 and 443. The
next security group protects the Router. The first rule permits
access to all addresses connecting to ports 1024-2352, which

4Through trial and error we have found it is unlikely we will receive
the error if we limit the number of concurrent requests to ten.

Figure 2: Scriptbot, Router, and Team VM Connectivity.

are the ports used for the SSH port forwarding (see the con-
nection from the user to her VM in Figure 2). The Router
security group also allows connections to the ports between
1024 and 65535 if the connection originates from the War
Range, which is represented by an arc between the teams in
Figure 2. The fourth security group is for the teams. The only
rule in this group permits access to ports 1024-65535 if the
connection originates from the Router, which means the only
way to connect to another team is by sending packets through
the Router. Referring to Figure 2, notice the arcing connec-
tion through the Router and the connection from Scriptbot
are permitted on port 20000, whereas, the direct connection
from team three is prevented by the AWS security group.
This was designed like this because we wanted to give each
team root access to their VM, and, as a result, each team’s
VM must be considered hostile and outside of our control.
However, the VM-independent nature of the security groups
provides a simple mechanism to achieve the desired effect.

3.4 Intelligent Component Recreation

As anyone who has created a machine from scratch knows, it
is not uncommon for some small part of the install process to
fail, and, unfortunately, this happens when creating VMs in
the cloud as well. Thus, GM has a robust and extensible set
of tests that it runs to verify the VMs are operating correctly.
For the game components, the tests verify that the machine
is accessible, the proper ports are open and responding
appropriately, and the internal services are up and running.
For the team VMs, it checks each of the vulnerable services
by running the same scripts that will be used to verify service
operation during the competition. If any of the tests fail for
a machine, the GM automatically destroys the machine and
recreates a new one from scratch.

5



4 Validation

We expected that the CTF-as-a-Service platform would
scale to handle large-scale events, however we would not
know for certain unless we tested it. Thus, after completing
the development, we ran a load test with 250 teams to
uncover any latent defects and evaluate its ability to manage
a large-scale event. After fixing the issues, we torture tested
it and the AWS network by hosting the 2017 international
Capture the Flag event (iCTF) in which 317 teams competed
for fame, glory, and an entry into the 2017 DEF CON CTF.

4.1 Load Testing, Round One

To understand the performance characteristics of the
CTF-as-a-service framework in a large-scale environment,
we ran a three phased load test. In phase one, we wanted
to verify the components would work with a large number
of teams. In the second phase, we tested the infrastructure
with random team-to-team traffic and team flag submissions.
In the third phase, we focused all the team-to-team traffic on
one team VM. For the tests, we created 250 team VMs with
ten vulnerable services running on each machine. Each team
VM was configured with four processors and 16GB of RAM.

Once all the machines were running, the infrastructure
reported that most of the team’s services were down even
though all of the machines passed the GM’s verification tests.
After some investigation, we realized that the Scriptbot was
not able to execute all its tests within a single round. In a
round, it needed to run about 8,800 scripts (each one running
in a separate process), which required far more processing
power and memory than we expected. After increasing it
from 8-processors to 32-processors, it was completing most
the time. However, we realized that the number of Scriptbots
would need to be increased for large scale events to ensure
that all the teams’ services were properly validated each
round.

Fortunately, the other infrastructure components operated
as expected while the game was idle and we were able to
start the second phase. For this phase, we started simulating
traffic between the teams and performing flag submissions to
the Team Interface by each of the teams. All the components
performed exceptionally well. We had zero issues while this
was running. Moreover, we ran this test for several hours
and during the entire test the Scriptbot successfully verified
the services on all the machines.

For the third phase, we had 249 of the team VMs connect
repeatedly to a single team VM to see how the victim would
handle the directed attack. During the test, the victim VM,
surprisingly was able to respond to requests, and we were
also able to SSH to the box, however the response time for
both were exceptionally slow. During all the phases, the
Router handled the load well even though it was only using
a two processor instance.

4.2 The Second Load Test—iCTF 2017

We successfully tested the scalability of our CTF-as-a-service
framework by using it to host the iCTF event on March 3rd,
2017. This edition of the competition was different from pre-
vious years in that it (1) was open to the public, (2) lasted 24
hours, and (3) was a DEF CON CTF 2017 qualifier; whereas,
in prior years we have limited it to academic teams, only
eight hours, and was not a qualifier. For this competition, we
developed ten vulnerable services, and 317 teams registered.

To reduce our risk of infrastructure failure, we decided
to over-provision the CTF instance. First, based on the load
tests discussed in Section 4.1, we choose to create four Script-
bots that were each responsible for testing a particular subset
of the teams. Next, we choose to configure the Database and
all four Scriptbots with a VM that had 36 processors and
60GB of RAM. We configured the Gamebot, Scoreboard,
Team Interface, and Router with a VM that had 16 processors
with 64GB of RAM. Last, we configured the teams’ VMs
to use a 4-processor machine with 16GB of RAM.

When we started the competition, the infrastructure with-
stood 317 teams pounding each other and did not suffer from
any infrastructure problems for the first 18 hours. However,
just after the 18th hour of the competition, the infrastructure
started to crumble. Specifically, the Router stopped allowing
connections between the teams. During the competition, we
tried to fix the issue, and, although we suspected it was a
DOS attack, we could not convince the offending team to
stop. So, unfortunately, we had to end the competition early.

After an in-depth forensic investigation [21], we discov-
ered that a team cheated5 and used their custom-developed
in-game botnet (running on nearly all 317 teams VMs) to
launch a DDoS attack against another team. In this attack,
the bots opened a connection to the victim machine and
then terminated it, however, it never sent a FIN packet. This
caused the Router to hold each connection open until it timed
out. As the number of connections grew, the Router reached
a point where it was unable to accept new connections.

With the over-provisioned configuration, the cost of the
1,504 processor infrastructure for twenty-four hours was
approximately 3,500 USD, which Amazon covered with
a generous sponsorship. Fortunately, smaller and shorter
competitions should cost a fraction of that amount. For
example, a six-hour competition with one hour for setup and
twenty teams should cost less than 50 USD6.

Despite the challenges, the 2017 iCTF load test proved
that it is possible to leverage the cloud to support large-scale
ADCTF competitions.

5The iCTF, as a hacking competition, does not have many rules,
however DoS attacks are explicitly against the iCTF rules.

6For example, creating a six-hour game that uses two t2.2xlarge
instances for Database and Scriptbot, four t2.large instances for the
remaining components, and twenty t2.medium instances for the teams, is
estimated to cost 25 USD.

6



5 Lessons Learned

While developing and running the CTF-as-a-Service
framework we ran into several issues that we will discuss in
this section. Fortunately, most of the problems we uncovered
are solvable, and while we have addressed many of them,
we believe that they will serve as useful lessons learned to
those developing complicated distributed systems.

While trying to create a large game, we found that we
could not have more than ten components starting up at the
same time (see Section 3.2). This limitation is from a request
limit imposed by AWS, and it forced us to limit the number
of simultaneous instantiations to ten. As a result, bringing
up 326 VMs takes over three hours. However, we found that
we could cut the process by one-third of the time by using
a custom Amazon machine image [4]. To create the image,
we first create a team VM with all the services installed and
running properly and then have AWS make a private image
of the VM.

Another interesting issue related to instantiating a large
game, is that sometimes AWS may not have enough
available resources to create the machines as fast as we
are requesting. For example, while trying to instantiate
the 317 team VMs, with four processors each, AWS
stopped allowing new instances and reported that it had
run out of resources for the configuration we were using
within the availability zone being used. AWS has several
geographically dispersed regions that are designed to be
completely isolated from each other [5], called availability
zones. Within each region, a VM can be assigned to a
particular availability zone. However, each subnet of the
VPC must reside entirely within one availability zone. As a
result, the obvious work-around failed because we could not
simply start bringing up machines in a different availability
zone and the design would not support spanning multiple
subnets. So, to bring up the boxes, we would have to wait a
few minutes after receiving the error and restart the process.

As discussed in Section 4.2, we experienced a DDoS
attack during the 2017 iCTF competition where nearly all
the teams bombarded a single victim. Even though we load
tested an attack from 249 machines to a single machine,
and found that it could withstand the attack, we did not test
what would happen if the attacking machines did something
closer to a SYN-flood DDoS attack. In the near future,
we plan to research what happened by creating a game
and recreating the attack. We will use this environment to
understand exactly what went wrong and to devise a solution.
In addition, we will use this test to explore the possibility of
using a monitoring application to notify us when the network
is starting to experience connectivity issues.

While running the iCTF competition, we found that the
GM’s component testing and recreation process is too smart
and made debugging difficult. The retry logic is absolutely
necessary for the automated CTF-as-a-Service environment.

In a production environment, if something fails, it is probably
an issue with the instantiation so often destroying and
recreating the component will solve the issue. Therefore, it is
no surprise that this works great in a production environment
with a stable code base. However, this approach is not
applicable in an environment with unstable code, like the
iCTF event. For example, if a mistake is made while making
changes to a vulnerable service and it no longer works, the
developer needs the machine to continue running so that she
can debug the problems. However, the GM, not realizing
this, will destroy the VM and attempt to recreate it until
it runs out of retries and then it will simply destroy the
component. As a result, with the component destroyed, the
developer cannot view the logs or otherwise investigate what
was actually causing the error.

Shortly after the competition began, we realized that
many of the teams were given access credentials to two
team VMs instead of one. To understand how this occurred
it is necessary to explain how the Team Interface worked
for the registration phase and the execution phase. The
CTF-as-a-Service platform was designed to run as a single
unit. However, for the iCTF, we needed to have a registration
server up and running several weeks prior to the event
starting (SWPAG will handle all registration for the CTF-
as-a-Service). To do this, we created a CTF instance and left
only the Database and Team Interface components running
because team registration and verification was handled by
those components. Once we closed registration a few day
prior to the start of the competition, we exported all the teams
from the Database and loaded them into the production iCTF
instance. During the loading process, each team’s identifier
was regenerated by the process, so a team had an identifier in
the old system that was different from the new one, but every-
thing else was the same. Just before the competition started,
we switched the DNS from the old Team Interface to the pro-
duction instance. Within a short period of time, we realized
that since the DNS was the same and the team’s sessions did
not expire they could see the login credentials of the team
that received their old identifier (because the Team Interface
stored the session information in a client-side cookie). For
example, the team zero cool with the identifier of 117 on
the registration server could retrieve the private key for
crash override, which was team 117 on the production server.

The only true solution to this we could devise during
the event was to create a completely new production CTF
instance. Fortunately, we were able to bring up the second
CTF instance in a different availability zone while the
participants played on the first. So, with not much more than
the push of a button, we had two CTF instances running
concurrently using nearly 650 VMs. After the first eight
hours of the competition, we instituted a break during the
break we disabled the first production instance and pointed
players to the new game, which ensured that each team only

7



had access to a single machine unless they found some other
way to compromise them7.

The iCTF-specific issues highlight the requirement
differences between a general CTF-as-a-Service versus what
is required when hosting an iCTF event. First, the iCTF
is often closer to a development environment because we
are constantly trying to push the envelope and find new and
interesting ways to execute an ADCTF. So, for the iCTF we
need less of an automated black box and more direct access
to the components and configuration. Second, the iCTF
competition is also the largest ADCTF, and we expect most
organizers using SWPAG will host events with less than 50
teams—in fact, we will limit the size of events that SWPAG
will host automatically. Third, the iCTF has open registration
for its events whereas for CTF-as-a-Service SWPAG will
handle registration.

6 Related Work

Although they have been around for many years the difficulty
and time constraints have resulted in only a few online
ADCTFs being held each year. In the United States, the two
largest being our iCTF event and RuCTF.

Buena Vista University’s ADCTF is a cloud-based
infrastructure that is geared towards giving participants a
gentle introduction to an ADCTF competition [9]. The
goal of the organizers is to keep the event small so that
the complexity of successfully competing is reduced. As a
result, the environment relies on a single administration VM
that takes care of managing the services, flags, and scoring.
While some similarities exist to our CTF-as-a-Service
framework, the stated goal of their system and its subsequent
design are significantly different.

Another group working in a similar area is the joint
team working on the Build It, Break It, Fix It (BIBIFI)
contests [29]. In these contests, the participants first build
a system according to the specifications published by the
organizers. The teams submit their solutions and are scored
based on their conformance to the specifications. Next, the
teams enter the break it phase. When the breakers believe
they have found a defect, they submit the flaw with an
explanation. Their submission is automatically scored and
more points are awarded for security vulnerabilities. In the
fix-it phase, the build teams receive the bug reports and must
fix the discovered flaws. This type of contest is similar to
an ADCTF and provides an exciting learning opportunity
for the teams. However, it is not currently offered in a
framework that could be easily implemented by those that
might wish to host their own BIBIFI event.

The Cyber Range Instantiation System (CyRIS) enables
educators to automatically deploy and manage cyber ranges

7For example, we do not advise participants to post the email address
and password for their team to the public chat channel.

for cybersecurity education [27]. Similar to ADCTFs, a
cyber range is a controlled virtual environment that is used
to give participants hands-on security experience. While this
work is interesting, this research takes a different approach
to education and lacks the game aspect of ADCTFs, which
pushes students to go beyond the call of duty. Moreover,
the cyber range still requires the organizer to possess a
certain level of sophistication, our expectation is that we will
empower even less savvy organizers than CyRIS.

PicoCTF is designed to increase interest in computer sci-
ence among high school students [11]. PicoCTF is an attack-
focused style of competition. Participants interact with it
using a web-based graphical user interface, which is designed
as an interactive game. The game even features cut-scenes,
sound effects, four levels, and 57 challenges. PicoCTF is dif-
ferent from our CTF-as-a-Service because its target audience
is different, and it does not offer any defense exercises.

For the last ten years, the Zero Day Initiative has hosted
the Pwn2Own event at CanSecWest [18]. In the Pwn2Own
hacking challenge, participants try to compromise the
security of various up-to-date computer devices and if they
do, they win the device or money. This event differs from
the CTF-as-a-Service because it is an attack-only style and
its goal its goal is to help vendors find 0-day vulnerabilities
and not helping to educate the participants.

Another style of competitions focus on network defense.
In these competitions, participants protect their networks
by reacting to intrusions from external attackers [13, 26].
This style of competition features only network defense, and,
unlike ADCTFs, they do not have an attack component for
the competitors.

7 Conclusion

SWPAG is a powerful educational tool that empowers anyone
to launch their own ADCTF leveraging an easy-to-use inter-
face. Although ADCTFs provide several benefits to teaching
security professionals, until now, the creation of an event was
a substantial undertaking that required a broad range of net-
working and administration skills. SWPAG leverages AWS
and UCSB’s open source iCTF framework to provide a se-
cure environment for teaching the security professionals of to-
morrow. While it is still in the early stages of its development,
the platform has already survived a 317-competitor ADCTF
event and is ready to support future online ADCTF events.

8 Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant 1623246 and 1623269 and
by the generous contributions of Amazon Web Services
(special thanks to the AWS Security team).

8



References

[1] Amazon API Error Codes. http://docs.aws.

amazon.com/AWSEC2/latest/APIReference/errors-

overview.html, 2017.
[2] Amazon EC2 Instance IP Addressing. http://docs.

aws.amazon.com/AWSEC2/latest/UserGuide/using-

instance-addressing.html, 2017.
[3] Amazon EC2 Security Groups for Linux Instances.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
network-security.html, 2017.

[4] Amazon Machine Images (AMI). http://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/AMIs.html,
2017.

[5] Amazon Regions and Availability Zones. http://docs.

aws.amazon.com/AWSEC2/latest/UserGuide/using-

regions-availability-zones.html, 2017.
[6] Amazon VPC FAQs. https://aws.amazon.com/vpc/

faqs/, 2017.
[7] AWS NAT Instances. http://docs.aws.amazon.com/

AmazonVPC/latest/UserGuide/VPC_NAT_Instance.

html, 2017.
[8] CTF Time. https://ctftime.org, 2017.
[9] BACKMAN, N. Facilitating a battle between hackers: Com-

puter security outside of the classroom. In Proceedings of
the 47th ACM Technical Symposium on Computing Science
Education (New York, NY, USA, 2016), SIGCSE ’16, ACM,
pp. 603–608.

[10] BLANKENSHIP, L. The Conscience of a Hacker. http:

//phrack.org/issues/7/3.html, 1986.
[11] CHAPMAN, P., BURKET, J., AND BRUMLEY, D. Picoctf:

A game-based computer security competition for high school
students. In 2014 USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE 14) (San Diego,
CA, 2014), USENIX Association.

[12] CHILDERS, N., BOE, B., CAVALLARO, L., CAVEDON, L.,
COVA, M., EGELE, M., AND VIGNA, G. Organizing Large
Scale Hacking Competitions. In Proceedings of the Conference
on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA) (Bonn, Germany, July 2010).

[13] CONKLIN, A. The use of a collegiate cyber defense competi-
tion in information security education. In Proceedings of the
2Nd Annual Conference on Information Security Curriculum
Development (New York, NY, USA, 2005), InfoSecCD ’05,
ACM, pp. 16–18.

[14] DASGUPTA, D., FEREBEE, D. M., AND MICHALEWICZ, Z.
Applying puzzle-based learning to cyber-security education.
In Proceedings of the 2013 on InfoSecCD ’13: Information
Security Curriculum Development Conference (New York, NY,
USA, 2013), InfoSecCD ’13, ACM, pp. 20:20–20:26.

[15] DOUPÉ, A., EGELE, M., CAILLAT, B., STRINGHINI, G.,
YAKIN, G., ZAND, A., CAVEDON, L., AND VIGNA, G.
Hit ’em Where it Hurts: A Live Security Exercise on Cyber
Situational Awareness. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC) (Orlando,
FL, December 2011).

[16] FREDRICKS, J. A., BLUMENFELD, P. C., AND PARIS, A. H.
School engagement: Potential of the concept, state of the

evidence. Review of educational research 74, 1 (2004), 59–
109.

[17] GETTINGER, M., AND SEIBERT, J. K. Best practices in
increasing academic learning time. Best practices in school
psychology IV 1 (2002), 773–787.

[18] GORENC, B. Pwn2own 2017 at cansecwest.
https://www.zerodayinitiative.com/blog/2017/3/

23/pwn2own-2017-an-event-for-the-ages, March
2017.

[19] HAMARI, J., KOIVISTO, J., AND SARSA, H. Does gam-
ification work?–a literature review of empirical studies on
gamification. In 47th Hawaii International Conference on
System Sciences (HICSS) (Hawaii, 2014).

[20] HARMON, T. Cyber Security Capture The Flag (CTF):
What Is It? https://blogs.cisco.com/perspectives/

cyber-security-capture-the-flag-ctf-what-is-

it, 2016.
[21] The 2016-2017 iCTF DDoS. https://ictf.cs.ucsb.

edu/pages/the-2016-2017-ictf-ddos.html.
[22] The iCTF Framework. https://github.com/ucsb-

seclab/ictf-framework.
[23] JALABI, R. OPM hack: 21 million people’s personal in-

formation stolen, federal agency says. The Guardian (July
2015).

[24] JARIWALA, S., CHAMPION, M., RAJIVAN, P., AND COOKE,
N. J. Influence of Team Communication and Coordination
on the Performance of Teams at the iCTF Competition. In
Proceedings of the Human Factors and Ergonomics Society
Annual Meeting (2012).

[25] MARTINI, B., AND CHOO, K.-K. R. Building the next
generation of cyber security professionals. In 22nd European
Conference on Information Systems (ECIS 2014) (Tel Aviv,
Israel, May 2014).

[26] MULLINS, B. E., LACEY, T. H., MILLS, R. F., TRECHTER,
J. E., AND BASS, S. D. How the cyber defense exercise
shaped an information-assurance curriculum. IEEE Security
Privacy 5, 5 (Sept 2007), 40–49.

[27] PHAM, C., TANG, D., CHINEN, K.-I., AND BEURAN, R.
Cyris: A cyber range instantiation system for facilitating se-
curity training. In Proceedings of the Seventh Symposium on
Information and Communication Technology (New York, NY,
USA, 2016), SoICT ’16, ACM, pp. 251–258.

[28] PRINCE, M. Does active learning work? a review of the
research. Journal of engineering education 93, 3 (2004), 223–
231.

[29] RUEF, A., HICKS, M. W., PARKER, J., LEVIN, D.,
MAZUREK, M. L., AND MARDZIEL, P. Build It, Break It,
Fix It: Contesting Secure Development. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications
Security (CCS) (2016).

[30] 2015 Global Cybersecurity Status Report. https:

//www.isaca.org/cyber/documents/Cybersecurity-

Status-Report_ifg_Eng_0115.pptx, 2017.
[31] SHOSHITAISHVILI, Y., INVERNIZZI, L., DOUPÉ, A., AND

VIGNA, G. Do You Feel Lucky? A Large-Scale Analysis of
Risk-Rewards Trade-Offs in Cyber Security. ACM Symposium
on Applied Computing (March 2014).

9

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/errors-overview.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/errors-overview.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/errors-overview.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/vpc/faqs/
https://aws.amazon.com/vpc/faqs/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
https://ctftime.org
http://phrack.org/issues/7/3.html
http://phrack.org/issues/7/3.html
https://www.zerodayinitiative.com/blog/2017/3/23/pwn2own-2017-an-event-for-the-ages
https://www.zerodayinitiative.com/blog/2017/3/23/pwn2own-2017-an-event-for-the-ages
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://ictf.cs.ucsb.edu/pages/the-2016-2017-ictf-ddos.html
https://ictf.cs.ucsb.edu/pages/the-2016-2017-ictf-ddos.html
https://github.com/ucsb-seclab/ictf-framework
https://github.com/ucsb-seclab/ictf-framework
https://www.isaca.org/cyber/documents/Cybersecurity-Status-Report_ifg_Eng_0115.pptx
https://www.isaca.org/cyber/documents/Cybersecurity-Status-Report_ifg_Eng_0115.pptx
https://www.isaca.org/cyber/documents/Cybersecurity-Status-Report_ifg_Eng_0115.pptx


[32] SUBY, M. The 2015 (isc) 2 global information security work-
force study. Frost & Sullivan in partnership with Booz Allen
Hamilton for ISC2 (2015).

[33] VABLASCO-ARCAS, L., BUIL, I., HERNANDEZ-ORTEG,
B., AND SESE, F. J. Using Clickers in Class. the Role of In-
teractivity, Active Collaborative Learning and Engagement in
Learning Performance. In Computers and Education, vol. 62.
Pergamon Press, March 2013, pp. 102–110.

[34] VAMVOUDAKIS, K., HESPANHA, J., KEMMERER, R., AND

VIGNA, G. Formulating Cyber-Security as Convex Opti-
mization Problems. In Control of Cyber-Physical Systems,
vol. 449 of Lecture Notes in Control and Information Sciences.
Springer, July 2013, pp. 85–100.

[35] VIGNA, G. Teaching Hands-On Network Security: Testbeds
and Live Exercises. Journal of Information Warfare 3, 2
(February 2003), 8–25.

[36] VIGNA, G. Teaching Network Security Through Live Exer-
cises. In Proceedings of the Third Annual World Conference on
Information Security Education (WISE) (Monterey, CA, June
2003), C. Irvine and H. Armstrong, Eds., Kluwer Academic
Publishers, pp. 3–18.

[37] VIGNA, G., BORGOLTE, K., CORBETTA, J., DOUPÉ, A.,
FRATANTONIO, Y., INVERNIZZI, L., KIRAT, D., AND

SHOSHITAISHVILI, Y. Ten Years of iCTF: The Good, The
Bad, and The Ugly. In Proceedings of the USENIX Summit
on Gaming, Games and Gamification in Security Education
(3GSE) (San Diego, CA, August 2014).

[38] The Conscience of a Hacker. https://en.wikipedia.

org/wiki/Hacker_Manifesto, 2017.
[39] WILLINGHAM, D. T. Critical thinking: Why is it so hard to

teach? Arts Education Policy Review 109, 4 (2008), 21–32.

10

https://en.wikipedia.org/wiki/Hacker_Manifesto
https://en.wikipedia.org/wiki/Hacker_Manifesto

	Introduction
	Background and Motivation
	Design of the CTF-as-a-Service
	The Games Controller
	The CTF Instance Components
	Network Configuration
	Intelligent Component Recreation

	Validation
	Load Testing, Round One
	The Second Load Test—iCTF 2017

	Lessons Learned
	Related Work
	Conclusion
	Acknowledgments

