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Abstract—Honeynet is a network architecture that utilizes mul-
tiple honeypots to deceive attackers and analyze their malicious
behaviors. However, existing honeynet has not evolved much since
its latest architecture, Gen-III, which was proposed in 2004.
Meanwhile, security threats and techniques used by adversaries
have been continuously advanced. As a result, honeypot architec-
ture is suffering from its limited functionalities of ‘data control’
and ‘data capture’. Existing data control mechanism does not
monitor internal propagation of malwares in the network and
also does not support honeypot transition from one to another
(e.g., a low-interaction honeypot to a high-interaction honeypot).
The data capture capability of traditional honeynet is also
insufficient as it is vulnerable to fingerprinting attacks.

To address these challenges, we design and implement an inno-
vative SDN-based honeynet named HONEYPROXY as a next gen-
eration honeynet. To prevent internal propagation of malwares
within honeynet, HONEYPROXY globally monitors all internal
traffic with the help of Software-defined Network (SDN) con-
troller. HONEYPROXY utilizes a novel connection management
mechanism across different honeypots in the network to support
honeypot transitions. To this end, a HONEYPROXY-enabled SDN
controller centrally programs the reverse proxy module that
operates in three specific modes. In addition, HONEYPROXY
improves the data capture capability in the existing honeynet
by circumventing fingerprinting attacks through multicasting
malicious traffic to relevant honeypots and selecting the response
which does not contain fingerprinting indicator(s). Experimental
results show that HONEYPROXY can support almost line rate
throughput (8.23 Gbps) on 10 Gbps link with a negligible latency
overhead (0.5− 1.2 milliseconds).

I. INTRODUCTION

A honeypot is a system that is designed to intentionally let
attackers probe, scrutinize and ultimately exploit the system
by exposing a set of vulnerable services [25], [12], [23].
The primary purpose of a honeypot is to closely monitor the
emulated system to learn behaviors of attackers and collect
malicious data during and after the exploitation of the honey-
pot. To achieve this goal, honeypots are intended to be under
active attack by real adversaries and they are often isolated
from the real operating system, services, or network. The
activities of adversaries collected from honeypots can provide
early warnings of new attacks and exploitation, enabling
administrators to protect the real systems and networks.

Honeypots are generally categorized into two types: low-
interaction honeypot (LIH) and high-interaction honeypot

(HIH). The main difference between the two types lies in their
complexity and the level of interaction they provide to the
attacker. LIHs emulate operating systems and other services,
and therefore do not provide attackers with much control
over the given system. The main advantage of LIHs stems
from their simplicity (i.e., easy deployment and maintenance)
and the low risk factor, because they are merely simulated
systems. However, LIHs can be easily fingerprinted [7]. HIHs
are typically actual systems and elicit more interactive infor-
mation from attackers than LIHs. However, maintenance and
deployment cost of HIH is much higher. HIHs also have higher
risk factor than that of LIHs because, unlike LIHs, they are
real systems and therefore could cause more severe damages
when compromised.

A honeynet is a network of honeypots created to enhance
the interaction with attackers. However, honeynet poses the
same weakness as that of honeypots. In addition, the first
honeynet architecture (Gen-I [24]) has first been proposed
in 2002, and the latest architecture, Gen-III [13], was built
in 2004. Due to the outdated honeynet architecture, existing
honeynet suffers from insufficient data control mechanisms
and data capture capability. For example, inbound/outbound
traffic control mechanisms in Gen-III architecture cannot
prevent internal propagation of malware within a honeynet
because access control rules are mainly enforced by a custom
gateway called honeywall [16], [21]. It is also incapable of
supporting the transition between a LIH and a HIH. LIHs are
effective for collecting high level information about attackers
(e.g., username and password pair), whereas HIHs focus on
collecting low level details [5]. However, existing honeynet
architecture does not provide a practical way to fully utilize
the advantages of both LIH and HIH.

In order to solve aforementioned problems, we argue that
the architecture of current honeynet should be redesigned to
provide more flexibility in terms of its network access manage-
ment. We observe that such flexibility and network access con-
trols can be satisfied by taking advantage of Software-defined
Networking (SDN [9]). SDN basically provides a centralized
network management platform by decoupling the control plane
(e.g., exchanging network rules) from the data plane (e.g.,
network switches). Routing policies of connected devices in
SDN are centrally configured via the SDN controller, and978-1-5386-0683-4/17/$31.00 c©2017 IEEE



the controller can provide a global view of the network to
SDN applications to help network administrators easily build
network-wide business logic. These strengths of SDN have
high potentials to address the limitations of existing honeypots
and honeynet architecture.

In this paper, we propose a novel honeynet architecture
to overcome the limitations of existing honeypots and
honeynet architecture by leveraging the SDN technology.
HONEYPROXY consists of a proxy module and a
corresponding SDN application. It takes the form of a
reverse proxy to provide improved control over incoming
and outgoing traffic while obtaining network configuration
via the SDN controller. Malicious traffic from attackers is
redistributed to all associated honeypots, and HONEYPROXY
selects one response from the response queue that does
not contain fingerprinting indicator(s). To prevent internal
malware propagation, HONEYPROXY cooperates with the
SDN controller to detect any anomalies within the network.
Supporting dynamic transition between a LIH and a HIH
is realized by enabling three types of operating modes
(Section IV-A).

The contributions of this paper are summarized as follows:

• We propose an SDN-based honeynet architecture called
HONEYPROXY that consists of a reverse proxy mod-
ule and corresponding SDN application. HONEYPROXY
addresses important problems in existing honeypots and
honeynet architecture: (1) fingerprinting attacks targeting
honeypots, (2) internal malware propagation in honeynet,
and (3) lack of honeypot transition.

• We propose a connection management engine that sup-
ports three operating modes: (1) Transparent Mode, (2)
Multicast Mode, and (3) Relay Mode. Based on the
decision of HONEYPROXY controller, malicious traffic
is processed differently so as to meet our design goals
(Section III).

• We implement a prototype of HONEYPROXY, and our
experimental results show that TCP throughput of HON-
EYPROXY achieves the line rate throughput (8.23 Gbps).
The latency incurred by HONEYPROXY is in the range
of 0.5 − 1.2 milliseconds on average. Connections per
second (CPS) handled by HONEYPROXY ranges from
640 to 1473 depending on the type of connection.

II. PROBLEM STATEMENT

Existing honeypots suffer from fingerprinting attacks, and
current honeynet architecture suffers from internal malware
propagation and a lack of honeypot transition mechanisms.

Vulnerable to fingerprinting attacks. A fundamental
drawback of existing honeypots is that they can be easily
fingerprinted by attackers. The essential objective of honeypots
is to collect as much information of malicious behavior as
possible to learn attacker’s techniques and to discover new
types of attacks and malware to provide early warnings to
network administrators. However, lack of functionalities and

Request Response
type payload type payload

exact match uname -a exact match Wed Nov 4 20:45:37 UTC 2009
pattern .{7,}\n exact match bad packet length

exact match vi exact match E558: Terminal entry not found in terminfo
exact match ifconfig exact match HWaddr 00:4c:a8:ab:32:f4

TABLE I: Example of known fingerprinting indicators for the
ssh honeypot kippo.

insufficient interactions with honeypots (especially LIHs) dis-
courages attackers from probing and exploiting the system.
For example, existing ssh honeypots such as kippo [7] can be
easily fingerprinted by using Linux commands such as uname
-a because kippo simply simulates the functionality of uname
command by printing out the hard-coded timestamp “Wed Nov
4 20:45:37 UTC 2009” (see Table I). In this way, attackers can
instantly identify the presence of honeypots, which reduces
the effectiveness in collecting attackers’ behavior. In other
words, neither honeypots nor honeynet architecture is capable
of preventing fingerprinting attempts due to the lack of data
control mechanism.

Internal propagation of malware. Current honeynet archi-
tecture cannot monitor internal traffic because access control
mechanisms are enforced at the custom gateway called the
honeywall. Honeywall monitors incoming and outgoing traffic
at a fixed location and acts as a traditional network firewall.
Due to the fixed placement of a honeywall, monitoring and
preventing internal propagation of malware in the honeynet is
difficult. In general, honeypots are not to be trusted because
attackers are encouraged to actively exploit those honeypots.
Therefore, if a honeypot is compromised, it can easily infect
other honeypots coexisting in the same network. To prevent
these incidents, administrators may want to add host-based
protection mechanisms within a machine (e.g., anti-virus,
iptables, or sandbox). However, host-based solutions are not
feasible because the attacker, who is taking control of the
honeypot, can circumvent these countermeasures. This is why
existing honeynet architecture should be redesigned to provide
better network-level protection.

Dynamic transition between LIH and HIH. LIHs emu-
late a set of real functionalities and expose (fake) vulnerable
and exploitable services to attackers. In particular, LIHs are
widely used in the early stage of attacks to collect infor-
mation on scanning attacks and login attempts (i.e., user-
name/password pairs). HIHs implement the majority of real
service (e.g., ssh and http). While HIHs provide deeper and
realistic interactions to attackers, they require sophisticated
configurations, high maintenance cost, and high possibility
of compromise. Consequently, Current honeynet mechanisms
totally rely on the capability of each honeypot, resulting in the
loss of potential opportunities for maximizing the advantages
of both LIHs and HIHs. For example, we could use both
types of honeypots by activating LIHs for scanning attacks
or the login phase of an attack, while enabling HIHs to
provide more interactive attacker actions after a successful
login event. Honeybrid [20], [5] strives to facilitate the use of
both honeypots by supporting transition mechanisms between
a LIH and a HIH. However, this approach does not provide
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Fig. 1: Overview of HONEYPROXY.

a flexible way to configure when and how to migrate the
establish connection from the one to another.

III. HONEYPROXY: DESIGN AND ARCHITECTURE

We propose HONEYPROXY as a next-generation honeynet
architecture, which leverages Software-Defined Networking
(SDN) to overcome the limitation of existing honeypots. In
this section, we describe the key design goals of our approach,
and we illustrate the architecture of HONEYPROXY along with
the detailed building blocks.

A. Design Goals

We define the following design goals that any next-
generation honeynet architecture should support:

• Universality. The approach should be able to monitor
all internal traffic to prevent compromised honeypots
from propagating malware within the network. Univer-
sality also means centralized network monitoring and
network-wide (i.e., universal) policy enforcement, which
is achieved by leveraging SDN.

• Flexibility. The honeynet architecture must support a
seamless transition from a LIH to a HIH and vice versa.
This transaction should also be flexible and configurable.

• Stealthiness. The approach must be covert — it has to
hide the existence of itself and minimize the exposure of
residing honeypots as much as possible. Therefore, the
approach should not incur noticeable delay in conducting
the given tasks, as the delay can result in the detection
of the honeynet.

• Generalization. The approach should be applicable re-
gardless of the type of residing honeypots or running
services. The key question here is related to how the ap-
proach can address and coordinate the redundant services
offered by different honeypots.

B. HONEYPROXY Overview

At high level, HONEYPROXY consists of a proxy module
and a SDN controller with corresponding application (Hon-
eyProxy controller) that enforces security rules and necessary
network rules (see Figure 1). Multiple honeypots are connected
to different switches, and they are centrally managed by the
HONEYPROXY controller. The requests sent by the attackers
pass through a series of modules in the proxy and are trans-
mitted to a set of relevant honeypots.
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(b) Honeypots are grouped by vulnerable services using HON-
EYPROXY.

Fig. 2: HONEYPROXY reshapes the landscape of honeynet
architecture toward one ‘BIG’ honeypot.

As shown in Figure 1, the proxy pushes a specific type of
tagging information inside the packet headers. HONEYPROXY
controller then creates SDN rules that check the tagging
information in SDN switches to enforce network policies
efficiently. The proxy module has three operational modes.
Based on the decision made by the HONEYPROXY controller,
the operating mode of the proxy would be reconfigured when
necessary (Section IV). To prevent fingerprinting attack, the
proxy module inspects the payloads of response to see if
it includes any fingerprinting indicators that may expose the
presence of honeypots and/or honeynet. Upon discovering such
an indicator, the proxy module signals the HONEYPROXY
controller to take appropriate action, such as changing the
proxy mode or updating network configurations. The proxy
module is also responsible for handling encrypted communica-
tion (for e.g., ssh connection). Section III-C provides detailed
architecture and building blocks of HONEYPROXY.

Figure 2 illustrates how HONEYPROXY changes the land-
scape of honeynet architecture. Traditional honeynet archi-
tecture runs multiple honeypots behind the custom firewall
(honeywall). However, the traditional architecture may rise
redundancy of the same emulated services because of the
lack of interaction between honeypots, as shown in Figure 2a.
This is the main cause of inefficient data control, and as a
result, only one honeypot is accessible to an attacker at any
given time. Moreover, each honeypot requires a lot of manual
configurations to simulate all possible services due to lack
of transition between honeypots, which is the main cause of
redundant services in the honeynet.
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HONEYPROXY, shown in Figure 2b, allows us to operate
the honeynet as one large honeypot running many vulnerable
services, which are the union of individual honeypots. It does
not require the extra burden of running redundant services
across diverse honeypots, because the proxy module distributes
requests and selects the best response. In other words, the at-
tacker is not able to determine one honeypot from another and
sees our honeynet as only one honeypot. To effectively gener-
ate multicast messages, the proxy module of HONEYPROXY
internally performs network address translation (NAT [26])
and deep packet inspection (DPI [14]) to interconnect the same
services across honeypots.

Our approach has several strengths compared to the existing
honeynet architecture: (1) Our approach allows attackers to
easily access various vulnerable services inducing more inter-
action with honeypots, which enables network administrators
to collect more data about malicious behaviors; (2) Finger-
printing attacks can be mitigated by dynamically selecting the
most appropriate response; (3) SDN controller monitors the
entire network of honepots to detect abnormal behaviors (for
e.g., connection attempts between honeypots) so that internal
propagation of malware can be easily prevented beforehand.

C. Architecture and Building Blocks

The HONEYPROXY architecture is illustrated in Figure 3.
HONEYPROXY consists of a reverse proxy module and an
SDN application (HoneyProxy controller). This design divides
network programming and packet processing into two distinct
logical layers. The reverse proxy module processes incoming
and outgoing traffic using three sub-components: Request Han-
dler, Connection Management Engine, and Response Scrub-
ber. The SDN application manages network configurations
and enforces SDN rules, while monitoring suspicious packets

within the network. Detailes of HONEYPROXY modules are
as follows:

Request Handler is responsible for handling the incoming
traffic. When a packet is received by Request Handler, the
payload is checked to decide if the traffic contains any known
fingerprinting attacks, which can reveals existence of the hon-
eypot (see Table [7]). If the payload contains scanning attacks,
which require to use L3 or below layer protocols, Request
Handler adds the scanning tag to the packets and directly
forwards to honeypots that are running intrusion detection
systems (IDS). Then, based on the result of checking payload,
the Request Handler signals the Connection Management
Engine to perform NAT and DPI to manage the sessions.
Therefore, the main function of Request Handler is to monitor
incoming traffic for suspicious packets and send the result to
Connection Management Engine.

Connection Management Engine is the core of reverse
proxy module that orchestrates Request and Response Handler.
The main goal of the engine is to select a response among
multiple responses received from honeypots and maintain the
sessions to support three operating modes of HONEYPROXY
(Section IV). Connection Management Engine also adds tag-
ging information to packet headers of incoming traffic, allow-
ing SDN switches to forward them to matching destination.

Response Handler is responsible for detecting finger-
printing indicators that may exist in the responses received
from honeypots. Responses including such indicators (Table I)
trigger this module to notify HONEYPROXY controller. First,
responses from associated honeypots are recorded in the
R Queue, waiting for the arrival of remaining responses until
the size of the queue is equal to the number of associated
honeypots. If the queue size and number of honeypots match
(or timeout event is triggered), then Connection Manage-
ment Engine selects the most appropriate response from the
R Queue.

Flow Programming Module runs as a part of the SDN
applications of HONEYPROXY controller. This module is
responsible for notifying the controller to add SDN rules (i.e.,
a flow entry) that correspond to particular traffic processed
by the reverse proxy. Packets marked as scanning will be
forwarded to appropriate honeypots. i.e., the ones that are
running IDS (e.g., snort [11]), which is specifically designed
to detect scanning attacks.

Mode Decision Module determines operation mode of the
proxy. Based on several criteria (Section IV-C), this modules
sends request to the proxy to change the operating mode.

To achieve the first design goal (universality), HON-
EYPROXY leverages SDN to make a decision on operating
modes of HONEYPROXY and enforce network and security
rules via SDN controller. HONEYPROXY monitors all flows
in the network via the SDN controller so that any connection
attempts generated by (potentially) compromised honeypots
can be logged, monitored, and prevented. To support dynamic
transitions between honeypots seamlessly (the second design
goal), Connection Management Engine in the proxy selects
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the most appropriate response from the receiving queue and
tracks the state changes of all active connections. In this way,
HONEYPROXY can also transparently migrate the connection
from one honeypot to another. To achieve the third de-
sign goal (stealthiness), HONEYPROXY attempts to minimize
the performance gaps between different operating modes of
HONEYPROXY using multi-processing techniques [22]. As
elaborated in Section VII, latency gaps between different
modes are less than a millisecond (< 1 ms), which is hardly
distinguishable when attackers connect over the internet. To
meet the last design goal, generalization, HONEYPROXY es-
tablishes multiple sockets with the associated honeypots to
support L4 or higher in OSI layer. Since vulnerable services
are mostly utilizing application layer protocol (L7) except for
scanning attacks, HONEYPROXY can accommodate to most
of protocols. For scanning attacks utilizing L3 or below, SDN
application of HONEYPROXY redirects those packets to one
of honeypots that runs an intrusion detection systems, which
are specifically designed to detect scanning attacks.

IV. OPERATING MODES AND CONNECTION MANAGEMENT
MECHANISM

The Connection Management Engine supports three op-
erating modes: transparent mode (T-Mode), multicast mode
(M-Mode), and relay mode (R-Mode). The purpose of these
modes is to efficiently and effectively deliver malicious traffic
to relevant honeypots and select the most appropriate reply
among multiple responses from the honeypots.

A. Operating Modes

Figure 4 illustrates the operation of three modes that HON-
EYPROXY supports. Each mode is intended to provide the
following features:

• Transparent Mode (T-Mode): T-Mode accounts for
the initial stage of attacks such as login trials. Because
these attempts are normally launched in an automated
manner (e.g., bots or scripts), low-interaction honeypots
can effectively handle such attacks. For scalability, HON-
EYPROXY only performs network address translation
without conducting deep packet inspection in this mode.

• Multicast Mode (M-Mode): Upon the successful login
of attacker, HONEYPROXY transfer the mode from T-
Mode to M-Mode to counteract fingerprinting attacks.
In this mode, every incoming payload is delivered to all
associated honeypots. However, merely sending multicast
messages would not work because each session has
unique session variables such as cookie or shared session

key, which are created and managed by the end honeypot.
To address this issue, HONEYPROXY builds multiple
sockets to maintain a set of connections between the
honeypots and HONEYPROXY and records session data.
Section IV elaborates on how HONEYPROXY maintains
multiple session data and determines the best reply to
send to the attacker among all received responses.

• Relay Mode (R-Mode): On the receipt of mode change
commands issued by HONEYPROXY controller, HON-
EYPROXY transfers the operating mode from M-Mode
to R-Mode or vice versa. R-Mode essentially allows
only one connection, which is established by a HIH,
to interact with the attacker while other sessions are
temporarily suspended. Keeping advanced and motivated
attackers connected only with LIHs is impractical and not
feasible. In such case, HONEYPROXY does no longer take
the burden caused by M-Mode (i.e., sending multicast
messages to associated honeypots). Therefore, R-Mode
enhances performance by configuring rest of the sessions
to a standby state. If necessary (e.g., bulk requests that
exceed a specified threshold), the controller can issue a
mode transition back to M-Mode to let LIHs interact with
attackers again.

B. Response Selection and Session Management

HONEYPROXY maintains a database of known fingerprint-
ing indicators that expose the presence of honeypots or hon-
eynet architecture. For example, Table I describes several
known fingerprints from an ssh honeypot named kippo [7], [1].
The proxy module of HONEYPROXY prevents sending known
fingerprinting responses to the attacker, therefore it selects
another response that does not contain the fingerprint(s).
Because this task is performed during the deep inspection of
packets in flight, the selection decision would not be made
by the SDN application but by the proxy module directly.
However, fingerprinting traces are reported back to the SDN
application of HONEYPROXY for later usage by the Mode
Decision Module. Note that finding fingerprints of honeypots
or honeynet architecture shown in Table I is out of our research
scope.

HONEYPROXY manages multiple sessions in a structured
fashion. It establishes a session with an attacker and inter-
nally creates a number of sessions (n) with the associated
honeypots. Figure 5 illustrates a snapshot of active sockets
running in M-Mode that maintains 1 : N sessions. Socket 0
corresponds to a connection made by the attacker, while the
rest correspond to each connection with a vulnerable service of
N honeypots. Each session is centrally managed by the proxy
module of HONEYPROXY (Connection Management Engine).
The proxy module also manages attacker’s identity (e.g. a
pair of username and password). Because the amount of each
session data may vary, the data is stored in the table so that
HONEYPROXY can rewrite the attacker’s socket, allowing the
vulnerable service to properly accept payloads. Examples of
session information include cookies of a HTTP service and a
shared session key of an ssh service.
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C. Transition Criteria of HONEYPROXY Controller

To make a reasonable decision of whether or not the attacker
needs to be served by a high-interaction honeypot (R-Mode),
we develop several criteria, consisting of connection duration
(δt), fingerprinting attack counts (#c), and previous record of
an attacker (< Rt, Rc >). The same IP address that has the
same identity (username and password pair) is used to locate
the previous records. For attackers who previously accessed
our honeynet, we keep records of them in Malicious Behavior
Logs repository. HONEYPROXY looks up the past records from
the repository and utilize them to better serve the attackers.
The mode of operation function (fm) for the session (s) is
determined by the following equation.

fm(s) =

{
R-Mode, if Rt

Rt+δt
·Rc + δt

Rt+δt
·#c ≥ θ

M-Mode, otherwise

The threshold value (θ) is configured to balance the workloads
of low-interaction honeypots and high-interaction honeypots.

V. FLOW PROGRAMMING MECHANISM

HONEYPROXY takes advantage of the high programmabil-
ity of SDN. The Connection Management Engine classifies
the type of incoming packets and adds tagging information
to the packets. Using those tags, the SDN controller enforces
appropriate actions to process the packets.

A. Flow Programming

Inspired by tagging techniques [15], [17], we leverage the
MPLS field to classify incoming traffic and statically reroute
the packets based on the marked tag. The Request Handler first
determines whether the incoming traffic is “scanning attacks”
(L3 or below), and then the Connection Management Engine
further categorizes the remaining packets. The Connection
Management Engine classifies the packet into four types
(T =< S,F, T,M,R >) such that S indicates scanning
attacks, F represents fingerprinting attempts and T,M,R are
elements of T-Mode, M-Mode, and R-Mode, respectively.
However, this syntax cannot account for each vulnerable
services across diverse honeypots. We thus specify the destined
service information (S =< s, h, d, f · · · >) for more accurate
analysis of malicious traffic where s, h, d, f stand for the ssh,
http, database, and ftp services, respectively. In summary, the
total number of SDN rules to process incoming traffic is
therefore computed by |T |× |S|. This information is recorded

and used by the Mode Decision Module to take appropriate
actions for attackers.

B. Blocking Malware Propagation

To block internal propagation of malware within the hon-
eynet, traditional honeynet inserts host-based access control
rules (e.g., iptables) in each honeypot machine to prevent
potential malicious traffic from being generated. However,
once a honeypot is compromised, the attacker can circumvent
the host-based access control rules. To address this issue,
HONEYPROXY uses a network-wide monitoring scheme and
enforces access control rules via SDN controller instead of
enabling host level protection. SDN rules are installed in the
network to forward outgoing traffic to the specific honeypot
that runs the intrusion detection system (IDS), such as snort.
In this way, internal traffic between honeypots is also be mon-
itored by IDS, consequently helping network administrators
detect internal malware propagation. Note that the routing path
of incoming traffic is not identical to that of outgoing traffic
because the incoming packets would pass through IDS. Also,
incoming and outgoing flows are physically separated by SDN
rules as all incoming traffic is tagged by the proxy module.
This mechanism is extremely useful for network administrators
to manage the network and investigate security breaches.

VI. IMPLEMENTATION

We implement HONEYPROXY with a commonly used SDN
controller, POX [10], along with KVM virtualization infras-
tructure to run a number of virtual honeypots. To maximize
the performance of HONEYPROXY, we choose C language
to build the proxy module. We also use Python for SDN
applications as the language is supported by POX. As ex-
plained in Section III, the reverse proxy module has three
subcomponents, and it runs a separate RESTful server to com-
municate with the SDN application over HTTP. Because the
proxy module runs at TCP layer (L4), any services built on top
of TCP also work, including http, ftp, and database services. It
additionally supports transport layer security (TLS) to address
https and ssh services. After configuring honeypots, the SDN
application can instantiate a number of proxies by sending
/api/runproxy/[service] request via RESTful API.
Each proxy is bound to the specified port and serves one
vulnerable service per proxy. If a proxy receives fingerprinting
indicators, it notifies the controller with relevant data, along
with associated connection identifier.

Next, we elaborate the packet processing logic of M-Mode
in HONEYPROXY. We only explain M-Mode as T- and R-
Modes are relatively straightforward to understand. First, a
proxy instance listens on an assigned port. Upon the receipt
of a new payload via a specific socket, the proxy checks
affiliation of the socket. If the socket is not found from the
existing socket pool, it means that a new attack has arrived at
our honeynet, causing the proxy to create a new socket map
(see Figure 5). Otherwise, HONEYPROXY locates the matching
socket map from the pool. In case the socket is originated from
the attacker, HONEYPROXY performs deep packet inspection
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Fig. 6: Packet processing logic of M-Mode of HONEYPROXY.

(DPI) to search for any known fingerprinting attempts. It then
makes a copy of the payloads and performs network address
translation (NAT) to send multicast messages to all associated
honeypots. Consequently, HONEYPROXY creates an empty
receiving queue (R Queue) for this socket map where size
of the queue is set to the number of associated honeypots
(N ). Returning responses from honeypots are inserted into the
R Queue until it becomes full (i.e., all requests are returned).
When all responses are collected (or a timeout is reached),
HONEYPROXY chooses an appropriate response from the
R Queue and sends it to the attacker. Section IV-B discusses
details of how HONEYPROXY selects an appropriate response.

VII. EVALUATION

Monitoring and analyzing payloads of incoming and out-
going packets requires a considerable amount of resources.
In particular, when the data arrives at the proxy module of
HONEYPROXY, it must conduct a pair-wise comparison with
known fingerprinting attacks, thereby it could be a bottleneck
for processing the requests. The fundamental question, hence,
is to quantify the overhead of HONEYPROXY and how the
overhead affects the behaviors of attackers. To answer the
question, we consider three test metrics while conducting the
experiments: (1) throughput (Gbits per second), (2) latency
(milliseconds), and (3) CPS (connections per second). We first
introduce our testbed followed by the detailed experimental
results.

A. Test Environment

Figure 7 illustrates the testbed setup for the evaluation.
Our testbed consists of two physical machines, each of which
has Intel Xeon CPUs (E5-2658v3 @ 2.20GHz, 24-cores) and
128GB RAM. One machine runs HONEYPROXY (the proxy
module and HONEYPROXY controller) on Ubuntu 16.04 LTS
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Fig. 7: Testbed network configuration.
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(Linux kernel v.4.4.0) and the other runs KVM virtualization
infrastructure on the same OS to emulate a set of honeypots.
To create a network of honeypots, we used a software switch
(OpenvSwitch v.2.5.0 [8]) that can act as an SDN switch.
All incoming traffic destined to our SDN-based honeynet
is considered malicious and therefore, passes through HON-
EYPROXY. As shown in Figure 7, HONEYPROXY intercon-
nects the external network (Internet) and honeynet by relaying
the packets from the Internet to honeynet or vice versa.

To effectively run the experiments, our testbed was config-
ured to run two representative services: http and ssh. For the
http service, we chose a widely deployed LIH, glostopf [3],
and HIHAT [2] for a HIH. To run the ssh service, kippo [7]
was selected as a LIH, and OpenSSH was used to mimic a
ssh HIH. Each honeypot is configured to have 4 vCPUs along
with 4GB RAM, and the link speed for every honeypot was
set to maximum 10 Gbps.

B. Performance of HONEYPROXY

Figure 9 shows TCP and SSL throughput results of HON-
EYPROXY using iperf [6]. HONEYPROXY achieved 8.23 Gbits
per second (Gbps) in T-Mode, while M-Mode and R-Mode
showed 4.5 and 7.79 Gbps, respectively. It is worthwhile
to note that M-Mode creates a copy of malicious payloads
and sends multicast messages, and therefore it requires a
considerable amount of resources compared to the others.
Additionally, the throughput is decreased by 57 percent when
using SSL protocol as it obviously handles encryption and
decryption of data.



0

1

2

3

4

5

6

7

8

9

T-Mode M-Mode R-Mode

T
h

ro
u

g
h

p
u

t 
(G

b
p

s)

HTTP HoneyProxy SSL HoneyProxy

Fig. 9: Throughput of HONEYPROXY with respect to three
different running modes.

0

500

1000

1500

2000

2500

3000

HTTP HoneyProxy SSL HoneyProxy

C
o

n
n

e
ct

io
n

s 
P

e
r 

S
e

co
n

d
 (

C
P

S
)

T-Mode M-Mode R-Mode Vanilla Client-Server

Fig. 10: CPS handled by HONEYPROXY with respect to three
different running modes.

We also take latency as one of the test metrics to measure
the performance, because latency can show end-to-end respon-
siveness between attackers and honeypots while throughput
metric measures the performance with respect to a massive
data transaction. To conduct these experiments, we implement
a socket server and client to measure the latency. The client
sends a hello message to the server, and the server responds
back with an echo message. We measure the round trip time
(RTT) for the client to send and receive the message. To
obtain ground truth, we first run the custom server on one
of the honeypots and measured the latency without running
HONEYPROXY. As illustrated in Figure 8, RTT took 0.5
milliseconds on average. When HONEYPROXY is enabled,
the average RTT is observed in the range of 1 and 1.7 mil-
liseconds. Each mode shows 1.24, 1.50, and 1.32 on average
(T-Mode, M-Mode, and R-Mode respectively). From these
results, we can expect 0.5 − 1.2 milliseconds delay incurred
by HONEYPROXY. We then conduct the identical experiments
over internet to measure how much latency can be attributed to
different geolocational network access. Interestingly, RTTs are
not distinguishable even if the client (attackers) access from
internet. In this case, consistent duration time is measured at
approximately 166 milliseconds regardless of the mode used.

Finally, connections per second (CPS) is also incorporated
to evaluate the performance of HONEYPROXY. CPS is mea-
sured by allowing a flood of requests reaching honeypots
via HONEYPROXY. Both incoming and outgoing connections
along with the nanosecond time precision are continuously

recorded during the period of 60 seconds. Figure 10 illus-
trates the experimental results of CPS for each mode, along
with the results for vanilla setup (i.e., the setup without
HONEYPROXY). Without HONEYPROXY, the CPS handled by
honeypots are 2500 and 2410 for HTTP and SSL respectively.
With HONEYPROXY, CPS of HTTP HONEYPROXY are 1473,
1058, and 1443, while that of SSL HONEYPROXY are 1000,
640, and 917 for T-, M-, and R-Mode respectively. The
results are consistent with that of throughput — since M-Mode
multicasts the incoming messages, it shows slightly decreased
number of CPS for both HTTP and SSL HONEYPROXY.
Compared to the vanilla results, degradation of CPS by using
HONEYPROXY could range from 41 to 55 percent. Our
experimental results demonstrate that it would be difficult for
attackers to identify the operating mode of HONEYPROXY
remotely.

VIII. RELATED WORK

SDN provides a global view and centralized control mecha-
nisms to SDN applications. In addition, SDN can help provide
flexibility in monitoring and controlling untrusted traffic within
honeynet. We leverage the SDN paradigm in our design and
implementation to centrally monitor and route packets to
honeypots, thereby supporting internal traffic monitoring and
mitigate the risk of internal malware propagation.

Honeypot farm [4] is an approach which involves deploy-
ment of many virtual honeypots in a network. Any malicious
traffic directed to the real network will be sent to the dedicated
group of honeypots in the network without knowledge of the
attacker. However, this approach only redirects the malicious
traffic to the honeypot farm and does not provide any data
control mechanisms. In addition, it is also vulnerable to
internal propagation of malware.

Honeybrid [5] is an architecture which is closely related to
our approach which uses connection migration between low-
interaction and high-interaction honeypots to take advantage of
the functionalities provided by both types of honeypots. How-
ever, honeybrid has a few design flaws. In their mechanism,
only the first scanning attacks are handled by low-interaction
honeypot, and the rest of connection are relayed to a high-
interaction honeypot. Therefore,only the high-interaction hon-
eypots are active during majority of the connection time.
On the other hand, HONEYPROXY routes traffic dynamically
based on its analysis of the incoming payloads. In this way,
the routed traffic is handled by either low-interaction or high-
interaction honeypot at any given time.

Collapsar [19] enables a VM-based honeyfarm architecture,
which consists of a group of virtual honeypots. It aims at pro-
viding centralized administration, efficient data classification,
and distributed view of honeypots. Though this architecture
succeeds in providing centralized monitoring of the honey-
pots, it does not support connection migration between low-
interaction and high-interaction honeypots, which becomes
important when dealing with a large scale of various attacks
to the system.



HONEYPROXY is greatly influenced by HoneyMix [18],
which presents a native SDN-based honeynet architecture.
HoneyMix involves deployment of various custom modules
in the SDN controller for dynamic connection selection and
prevention of fingerprinting attack. However, HoneyMix lacks
mitigation mechanism for internal malware propagation and
more importantly, does not support transition between honey-
pots, which is one of the core functionalities of next-generation
honeynet for encouraging more interaction between attackers
and honeypots.

IX. DISCUSSION

HONEYPROXY does not fix the defects and vulnerabilities
in individual honeypots [19]. Our assumption is that by
having honeypots that is foolproof for fingerprinting attack,
we could take advantage of the uniqueness of each honeypot
by connecting them to an entity, which we could centrally
monitor and respond to the attacker behind a honeywall.
Thus, reducing the chances of revelation of honeynet enables
network administrators to collect sufficient information that
helps detect, prevent and secure the network infrastructure. In
addition, HONEYPROXY relies on intrusion detection systems
(IDS) for detecting internal malware propagation by config-
uring way point of internal traffic. It means that an advanced
malware might not be filtered by our approach, depending on
the capability of IDS.

X. CONCLUSIONS

In this paper, we articulate the limitations of existing honey-
pots and honeynet architecture: (1) vulnerable to fingerprinting
attacks, (2) internal malware propagation, and (3) lack of hon-
eypots transition. To overcome the shortcomings, we present
an SDN-based honeynet architecture called HONEYPROXY as
a next generation honeynet. HONEYPROXY consists of a re-
verse proxy module and a corresponding SDN application. The
core of the reverse proxy is a novel Connection Management
Engine that selects the response and enables dynamic transi-
tions between low-interaction and high-interaction honeypots.
To address internal malware propagation, HONEYPROXY uses
a flow programming scheme that is implemented in the SDN
application. With our prototype implementation, experimental
results demonstrate that HONEYPROXY is able to support
the near line rate throughput (8.23 Gbps) with neglibible
latency (0.5 − 1.2 milliseconds) and handle enough number
of connections (1473 CPS).
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