
Going Native: Using a Large-Scale Analysis of
Android Apps to Create a Practical Native-Code

Sandboxing Policy

Vitor Afonso∗, Antonio Bianchi†, Yanick Fratantonio†, Adam Doupé‡,
Mario Polino§, Paulo de Geus¶, Christopher Kruegel†, and Giovanni Vigna†

∗CAPES Foundation
Email: vitor@lasca.ic.unicamp.br

†UC Santa Barbara
Email: {antoniob, yanick, chris, vigna}@cs.ucsb.edu

‡Arizona State University
Email: doupe@asu.edu
§Politecnico di Milano

Email: mario.polino@polimi.it
¶University of Campinas

Email: paulo@lasca.ic.unicamp.br

Abstract—Current static analysis techniques for Android ap-
plications operate at the Java level—that is, they analyze either
the Java source code or the Dalvik bytecode. However, Android
allows developers to write code in C or C++ that is cross-compiled
to multiple binary architectures. Furthermore, the Java-written
components and the native code components (C or C++) can
interact.

Native code can access all of the Android APIs that the Java
code can access, as well as alter the Dalvik Virtual Machine,
thus rendering static analysis techniques for Java unsound or
misleading. In addition, malicious apps frequently hide their
malicious functionality in native code or use native code to launch
kernel exploits.

It is because of these security concerns that previous research
has proposed native code sandboxing, as well as mechanisms
to enforce security policies in the sandbox. However, it is not
clear whether the large-scale adoption of these mechanisms is
practical: is it possible to define a meaningful security policy
that can be imposed by a native code sandbox without breaking
app functionality?

In this paper, we perform an extensive analysis of the native
code usage in 1.2 million Android apps. We first used static
analysis to identify a set of 446k apps potentially using native
code, and we then analyzed this set using dynamic analysis.
This analysis demonstrates that sandboxing native code with
no permissions is not ideal, as apps’ native code components
perform activities that require Android permissions. However,
our analysis provided very encouraging insights that make us

believe that sandboxing native code can be feasible and useful in
practice. In fact, it was possible to automatically generate a native
code sandboxing policy, which is derived from our analysis, that
limits many malicious behaviors while still allowing the correct
execution of the behavior witnessed during dynamic analysis for
99.77% of the benign apps in our dataset. The usage of our system
to generate policies would reduce the attack surface available to
native code and, as a further benefit, it would also enable more
reliable static analysis of Java code.

I. INTRODUCTION

Mobile operating systems allow third-party developers to
create applications (hereafter referred to as apps) that extend
the functionality of the mobile device. Apps span across all
categories of use: banking, socializing, entertainment, news,
health, sports, and travel.

Google’s Android operating system currently enjoys the
largest market share, currently at 84.7%, of all current smart-
phone operating systems [25]. The official app market for An-
droid, the Google Play Store, has around 1.4 million available
apps [2] (according to AppBrain, a third-party Google Play
Store tracking site) with over 50 billion app downloads [38].

Android apps are typically written in Java, and then
compiled to bytecode that runs on an Android-specific Java
virtual machine, called the Dalvik Virtual Machine (DVM).1
These apps can interact with the filesystem, the Android APIs
(to access phone features such as GPS location, call history,
microphone, or SMS messages), and even other apps.

The wealth of information stored on smartphones attracts
miscreants who want to steal the user’s information, send out

1In recent versions, the bytecode is instead compiled and executed by a
new runtime, called ART. For simplicity, in the rest of the paper we will only
refer to the DVM. However, everything we describe conceptually applies to
ART as well.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23384

premium SMS messages, or even have the user’s device join
a botnet [10].

Static analysis of Android applications has been proposed
by various researchers to check the security properties of the
apps that the user installs [5], [7], [17], [18], [22], [23], [28],
[29], [39], [42]–[45].

All the proposed static analysis techniques for Android
apps have operated at the Java level—that is, these techniques
process either the Java source code or the Dalvik bytecode.
However, Android apps can also contain components written
in native code (C or C++) using the Android NDK [19]. Some
of the reasons why developers might use this feature, as stated
by the NDK documentation [19], are:

For certain types of apps, [native code] can be help-
ful so you can reuse existing code libraries written
in these languages, but most apps do not need the
Android NDK.

Typical good candidates for the NDK are CPU-
intensive workloads such as game engines, signal
processing, physics simulation, and so on.

Using the NDK, the C or C++ code will be compiled and
packaged with the app. Android provides an interface (JNI)
for Java code to call functions of native code and vice versa.

While attempting to allow native code in Android apps is
noble, there are serious security implications of allowing apps
to execute code outside the Java ecosystem.

The existence of native code severely complicates static
analysis of Android apps. First, to our knowledge, no static
analysis of Android apps attempts to statically analyze the
native code included in the app. Thus, malware authors can
include the malicious payload/behavior in a native code com-
ponent to evade detection. Furthermore, the native code in an
Android app has more capabilities than the Java code. This is
because the native code has direct access to the memory of
the running process, and, because of this access, can read and
modify the Dalvik Virtual Machine and its data.2 Effectively,
this means that the native code can completely modify and
change the behavior of the Java code—rendering all static
analysis of the Java code unsound.

In light of these security problems with native code usage
in Android applications, researchers have turned to sandboxing
mechanisms, which limit the interaction between the native
code and the Java code [8], [33], [35]. This follows the least-
privilege principle: The native code does not need full access
to the Java code and thus should be sandboxed.

A native code sandbox should be security-relevant and
usable with benign, real-world apps. These requirements result
in the following properties:

• Least-Privilege: The native code of the app should
have access only to what is strictly required, thus
reducing the chances the native component could
extensively damage the system.

2Even if the Dalvik Virtual Machine memory is initially mapped as read-
only, a native code component can change the memory permission by using
the mprotect syscall.

• Compartmentalization: The native code of the app
should communicate with the Java part only using spe-
cific, limited channels, so that the native component
cannot modify, interact with, or otherwise alter the
Java runtime and code in unexpected ways.

• Usability: The restrictions enforced by the sandbox
must not prevent a significant portion of benign apps
from functioning.

• Performance: The sandbox implementation must not
impose a substantial performance overhead on apps.

Even though previous research has focused on the mech-
anism of native code sandbox enforcement [33], [35], to this
point no research has focused on how to generate a security
policy that a sandbox can enforce so that the policy is be both
practical (i.e., it would not break benign apps) and useful (i.e.,
it would limit malicious behaviors).

Sun and Tan [35], in their paper presenting the native code
sandboxing mechanism NativeGuard, state:

We decide to follow a heuristic approach and by
default grant no permission to the [sandboxed native
code] in NativeGuard. The approach is motivated
by the observation that it is rare for legal native
code to perform privileged operations, as it is a “bad
practice” according to the NDK.

Sun and Tan are correct that the NDK considers native code
performing privileged operations to be bad practice, however,
we need data to confirm this intuition. We must know: what is
the native code in real-world apps doing? How do real-world
apps use native code? For instance, what if native code is
used to perform exactly the same actions as Java code? In this
case, it would not be possible to meaningfully constrain the
permission of native code components, and enforcing the least-
privilege principle would not grant any security benefits. We
also need clarification as to how tightly coupled the communi-
cation is between the native code and the Java code. Enforcing
compartmentalization might break or negatively affect tightly-
coupled apps.

To answer these questions, we perform a large-scale anal-
ysis of real-world Android apps. Specifically, we look at how
apps use native code, both statically and dynamically. We
statically analyze 1,208,476 Android apps to see if they use
native code, then we dynamically analyze the 446,562 that
were determined to use native code. Our system is able to
monitor the dynamic execution of an app, while recording
activities performed by its native code components (e.g.,
invoked system calls, interactions between native and Java
components). From this analysis, we shed light on how real-
world Android apps use native code.

In addition, our dynamic analysis system can be used
to generate a native code sandboxing policy that allows for
normal execution of the native code behaviors observed during
the dynamic analysis of a set threshold of apps, while reducing
the attack surface and thus limiting many malicious behaviors
(e.g., root exploits) of malicious apps.

The main contributions of this paper are the following:

2

• We develop a tool to monitor the execution of native
components in Android applications and we use this
tool to perform the largest (in terms of number of apps
and detail of information acquired) study of native
code usage in Android.

• We systematically analyze the collected data, provid-
ing actionable insights into how benign apps use native
code. Moreover, we release the full raw data and we
make it available to the community [1].

• Our results show that completely eliminating per-
missions of native code is not ideal, as this policy
would break, as a lower bound, 3,669 of the apps in
our dataset. However, we propose that our dynamic
analysis system can be used to derive a native code
sandboxing policy that limits many malicious behav-
iors, while allowing the normal execution of the native
code behaviors observed during the dynamic analysis
of a set threshold of apps (99.77% in our experiment).

II. BACKGROUND

To understand the analysis that we perform on Android
applications and our proposed policy, it is necessary to review
the Android security mechanisms, how native code is used in
Android, the damage that malicious native code can cause, and
the previously proposed native code sandboxing mechanisms.

A. Android Security Mechanisms

When apps are installed on an Android phone, they are
assigned a new user (UID) and groups (GIDs) based on the
permissions requested by the app in its manifest. Every app is
executed in a separate process, which is a child of Zygote, a
process started when the system is initialized. Moreover, inter-
process communication is done using intents which all flow
through an Android system-level process called Binder [11].

On Android, some operations and resources are protected
by permissions. Apps must declare the permissions needed in
the manifest, and at installation time the requested permissions
are presented to the user, who decides to continue or cancel
the installation. Permissions are enforced app-wise using Linux
access-control mechanisms and by system services that check
if the app is allowed to access certain resources or perform the
requested operation [16].

B. Native Code

Native code in Android apps is deployed in the app as ELF
files, either executable files or shared libraries. There are four
ways in which the Java code of an Android app can execute
native code: Exec methods, Load methods, Native methods,
and Native activity.

Exec methods. Executable files can be called from
Java by two methods, namely Runtime.exec and
ProcessBuilder.start. Hereinafter we refer to these
methods as Exec methods.
Load methods. Native code in shared libraries can be loaded
by the framework when a NativeActivity is declared in the
manifest, along with its library name, or by the app through
the following Java methods, which are hereinafter referred to as
Load methods: System.load, System.loadLibrary,

Runtime.load, and Runtime.loadLibrary. Native
code in shared libraries can be invoked at loading time,
through calls to native methods and through callbacks in
native activities. When a library is loaded, its _init and
JNI_OnLoad functions are called.
Native methods. Native methods are implemented in shared
libraries and declared in Java. When the Java method is called,
the framework executes the corresponding function in the
native component. This mapping is done by the Java Native
Interface (JNI) [21]. JNI also allows native code to interact
with the Java part to perform actions such as calling Java
methods and modifying Java fields.
Native activity. Native code is invoked in native activities
using activities’ callback functions, (e.g., onCreate and
onResume), if defined in a native library.

C. Malicious Native Code

Malicious apps can use native code to hide malicious
actions from static analysis of the Java portion of the app.
These actions can be calls to methods in Java libraries, such
as sending SMS messages, or complex attacks that involve
exploiting the kernel or privileged processes to compromise
the entire OS. These root exploits are possible because native
code is allowed to directly call system calls. Another possible
way that attackers can directly call system calls to execute root
exploits is by exploiting vulnerabilities in native code used by
benign apps.

As previous research has shown [35], because native code
shares the same memory address space as the Dalvik Virtual
Machine, it can completely modify the behavior of the Java
code, rendering static analysis of the Java code fundamen-
tally unsound. For instance, malicious code can use functions
exported by libDVM.so to identify where the bytecode imple-
menting a specific Java method is placed in memory. At this
point, the native code can dynamically replace the method at
run time.

D. Native Code Sandboxing Mechanisms

Several approaches have been proposed to sandbox na-
tive code execution. For instance, NativeGuard [35] and Ro-
busta [33] move the execution of native code to a separate
process. Two complementary goals are obtained: (1) the native
code cannot tamper with the execution of the Java code and (2)
different security constraints can be applied to the execution
of the native code.

Communication between the Java code and the native code
is then ensured by modifying the JNI interface to make the two
processes communicate through an OS-provided communica-
tion channel (e.g., network sockets).

While moving native code to a separate process is a natural
mechanism to achieve the aforementioned goals (because it
relies on OS-provided security mechanisms, such as process
memory separation or process permissions), other solutions
are possible. For instance, thread-level memory protection
(as proposed in Wedge [8]). However, applying this solution
in Android would require significant modifications to the
underlying Linux kernel.

3

TABLE I. RESULTS OF THE STATIC ANALYSIS.

Apps Type
267,158 Native method
42,086 Native activity
288,493 Exec methods
242,380 Load methods
221,515 ELF file
446,562 At least one of the above

III. ANALYSIS INFRASTRUCTURE

We designed and implemented a system that dynamically
analyzes Android applications to study how native code is
used and to automatically generate a native code sandboxing
policy. Our analysis consists of an instrumented emulator, and
it records all events and operations executed from within native
code, such as invoked syscalls and native-to-Java communica-
tion. The dynamic instrumentation is completely generic, and
it allows the usage of any manual or automatic instrumentation
tool. The version of the Android system used was 4.3.

Since our goal was to obtain a comprehensive characteri-
zation of native code usage in real world applications, we used
a corpus of 1,208,476 distinct—different package names and
APK hashes—free Android apps that we have continuously
downloaded from the Google Play store from May 2012–
August 2014. The age of the apps varies throughout the time-
frame, as we currently do not download new versions of apps.

A. Static Prefiltering

Performing dynamic analysis of all 1,208,476 apps by
running each app would take a considerable amount of time;
therefore, by using static analysis, we filtered the apps that
had some indication of using native code. The characteristics
we looked for in the apps are the following: having a native
method, having a native activity, having a call to an Exec
method, having a call to a Load method, or having an ELF
file inside the APK.

We used the Androguard tool [12] as a basis for the static
analysis. To identify native methods we searched for methods
declared in the Dalvik bytecode with the modifier3 “native.”
Native activities were identified by two means: (1) looking for
a NativeActivity in the manifest and (2) looking for classes
declared in the Dalvik bytecode that extend NativeActivity.
Finally, calls to Exec and Load methods were identified by
investigating method invocations in the bytecode.

Of the 1,208,476 apps statically analyzed, 446,562 apps
(37.0%) used at least one of the previously mentioned ways
of executing native code. Table I presents the number of apps
that use each of these characteristics.

B. Dynamic Analysis System

Now that we have identified which Android apps use native
code, we now want to understand how apps use native code.
During the dynamic analysis we monitor several types of

3Modifier here is an attribute of a method, similar to public. An
example Dalvik method signature would be: .method public native
example().

actions performed by the analyzed apps, including system
calls, JNI calls, Binder transactions, calls to Exec methods,
loading of third-party libraries, calls to native activities’ native
callbacks, and calls to native methods. The system calls were
captured using the strace tool, and the other information we
obtained through instrumentation.

To monitor JNI calls, calls to native methods, and library
loading, we modified libdvm. However, we do not want to
monitor all JNI calls, just JNI calls to the app’s native code,
rather than calls to native code in the standard libraries that
Android includes. To avoid monitoring JNI calls in standard
libraries and calls to native methods in standard libraries,
we modified the “Method” structure to include a property
indicating whether it belongs to a third-party library or not.
When a third-party library is loaded, this property is set
accordingly.

We modified libbinder to track and monitor Binder
transactions. We record the class of the remote function being
called and the number that identifies the function. To map
the identifiers to function names, we parse the AIDL (Android
Interface Definition Language) files and source files that define
Binder interfaces. To find files that have such definitions, we
search for uses of the macros DECLARE_META_INTERFACE
and IMPLEMENT_META_INTERFACE and classes that ex-
tend “IInterface.” Furthermore, to match identification num-
bers to names, we search in “.cpp” files for enumerations
that use IBinder::FIRST_CALL_TRANSACTION and, in
“.java” files, for variables defined using IBinder.FIRST_-
CALL_TRANSACTION. We use the names assigned FIRST_-
CALL_TRANSACTION as the functions with identifier 1, the
ones assigned FIRST_CALL_TRANSACTION + NUM as the
functions with identifier 1+NUM and, for the enumerations
that only use FIRST_CALL_TRANSACTION to define the
first element, we consider they are increasing the identifier
one by one.

Calls to Exec methods are identified by instrumenting
libjavacore. Finally, to monitor the use of native callbacks
in native activities, we modified libandroid_runtime.

We determine which actions were performed by native code
and which by Java code after the dynamic analysis. To make
this determination, we observe when threads change execution
context from Java to native and from native to Java. Thus,
we process all system calls, keeping a list of threads that
are executing native code. We add a thread to this list when
one of the following happens: Exec method is executed—we
add the child process, which is then used to call execve, a
custom (third-party) shared library is loaded, a native method
is executed, or a callback in the native component of a native
activity is executed. When these actions are completed and the
execution control changes back to Java, the thread is removed
from the list.

We also remove a thread from the list when one of the
JNI methods in Table II is executed. The Call*<TYPE>
functions are used to call Java methods, and the NewObject*
functions are used to create instances of classes, which results
in the execution of Java constructors. When these methods
return, the thread is placed back on the list. Additionally, we
remove a thread from the list when the clinit method, which

4

Fig. 1. Possible transitions between native code and Java.

TABLE II. JNI METHODS THAT CAUSE A TRANSITION FROM NATIVE
TO JAVA. <TYPE> CAN BE THE FOLLOWING: OBJECT; BOOLEAN; BYTE;

CHAR; SHORT; INT; LONG; FLOAT; DOUBLE; VOID.

Call<TYPE>Method
CallNonVirtual<TYPE>Method

Call<TYPE>MethodA
CallNonVirtual<TYPE>MethodA

Call<TYPE>MethodV
CallNonVirtual<TYPE>MethodV

CallStatic<TYPE>Method
CallStatic<TYPE>MethodA
CallStatic<TYPE>MethodV

NewObject
NewObjectV
NewObjectA

is the static initialization block of a class, is executed. Figure 1
presents all mentioned transitions.

To understand how isolating the native code from the Java
code would impact the performance of the apps, we also
monitor the amount of data exchanged between native and Java
code. We measured the amount of data passed in parameters
of calls from native code to Java methods and vice versa, as
well as the size of the returned value. We also capture the size
of data used to set fields in Java objects. The results of this
analysis are presented in Section IV-B.

IV. EVALUATION AND INSIGHTS

We ran both the static pre-filter and dynamic analysis
across numerous physical machines and private-cloud virtual
machines. In total, we used 100 cores and 444 GB of memory.
Moreover, the analysis was run in parallel.

The dynamic analysis was performed using an instru-
mented Android emulator (as described in the previous sec-
tion), and to keep the analysis time feasible we limited the
analysis to two minutes for each app. To dynamically exercise
each application, we followed an approach similar to what is
used in Andrubis [40]: we used the Google Monkey [20] to
stimulate the app with random events, and we then automati-
cally generated a series of targeted events (by means of sending
properly-crafted intents) to stimulate all activities, services, and
broadcast receivers defined in the application.

Ideally, it would have been possible to use more sophis-
ticated dynamic instrumentation systems. However, the large
scale of our analysis motivated our choice to use a simpler
approach, as it would have required a prohibitive amount of
resources to run on hundreds of thousand of apps. While
our dynamic instrumentation system is acceptable for the
purposes of understanding the lower bound on what behaviors
native code performs, the incompleteness inherent in dynamic
analysis can affect the native code policies generated by our
system. However, if Google or another large company were
to adopt the idea of using a dynamic analysis system to
automatically generate a native code security policy, they
could use substantial resources to run the applications for
longer periods of time, use sophisticated dynamic analysis
approaches [32], or even introduce the instrumentation into
the Android operating system and sample the behaviors from
real-world devices.

During dynamic analysis, 33.6% (149,949) of the apps
identified by static analysis as potentially having native code
actually executed the native code. Table III presents the number
of apps that executed each type of native code. These numbers
constitute a lower bound of the apps that could actually execute
native code.

In order to understand, for our study, why the native
code was not reached during dynamic analysis, we manually
analyzed, statically and dynamically, 20 random apps that were
statically determined to have native code. For 40% (8) of them,
we established through analysis of the decompiled code that
the native code was unreachable from Java code (also known
as deadcode). The remaining applications were too complex
to be manually inspected, and we were not able to ascertain
whether the native code components were not reached due
to deadcode. For this reason, we dynamically analyzed and
manually interacted with them and we did not find any path
that led to the execution of the native code. Thus, we believe
that also in this case the native code component was not
reached due to deadcode, even if we were not able to be
completely certain, due to the incomplete nature of manual
analysis.

We further investigated why there was deadcode in these
apps. In each case, the native code was deadcode in third-party
libraries. In fact, in our experience, it often happens that an
app includes a third-party library, to then actively use only
a (sometimes very limited) subset of its functionality, thus
leading to deadcode. Hence, we expect this to be the case
for many apps where our analysis did not reach native code.
As an additional experiment, we also manually and extensively
dynamically exercised another 20 random apps. We observed
no cases of significant changes in the results compared to the
Google Monkey automated analysis (neither additional native
code components were reached nor more syscalls were called).

To further understand the coverage of our dynamic anal-
ysis system we performed two additional experiments, one
measuring the Java method coverage and one measuring the
native code coverage. Section VII discusses these experiments
in depth.

5

TABLE III. THE NUMBER OF APPS THAT EXECUTED EACH TYPE OF
NATIVE CODE.

Apps Type
72,768 Native method
19,164 Native activity
132,843 Load library

27,701 Call executable file (27,599 standard,
148 custom and 46 both)

149,949 At least one of the above

TABLE IV. OVERVIEW OF ACTIONS PERFORMED BY CUSTOM SHARED
LIBRARIES IN NATIVE CODE.

Writing log messages
Performing memory management system calls, such as mmap
and mprotect
Reading files in the application directory
Calling JNI functions
Performing general multiprocess and multithread related system
calls, such as fork, clone, setpriority, and futex
Reading common files, such as system libraries, font files, and
“/dev/random”
Performing other operations on files or file descriptors, such as
lseek, dup, and readlink
Performing operations to read information about the system,
such as uname, getrlimit, and reading special files (e.g.,
“/proc/cpuinfo” and “/sys/devices/system/cpu/possible”)
Performing system calls to read information about the process
or the user, such as getuid32, getppid, and gettid
Performing system calls related to signal handling
Performing cacheflush or set_tls system calls or per-
forming nanosleep system call
Reading files under “/proc/self/” or “/proc/<PID>/”, where PID
is the process’ pid
Creating directories

A. Native Code Behavior—An Overview

We present in this section an overview of the actions
performed by native code on Android. We split the actions into
those performed by shared libraries (including those performed
during library loading, native methods, and native activities)
and those that are the result of invoking custom, executable,
and binaries through Exec methods. We also present the actions
performed using standard binaries (i.e., not created by the app),
but in this case based on their names and parameters, instead
of looking at the system calls.

94.2% (125,192) of the apps that used custom shared
libraries executed only a set of common actions in native code,
and Table IV contains the common actions.

TABLE V. TOP FIVE MOST COMMON ACTIONS PERFORMED BY APPS IN
NATIVE CODE, THROUGH SHARED LIBRARIES (SL) AND CUSTOM

BINARIES (CB). FOR THE INTERESTED READER, WE REPORT THE FULL
VERSION OF THIS TABLE IN [1].

SL CB Description
3,261 72 ioctl system call
1,929 39 Write file in the app’s directory
1,814 35 Operations on sockets
1,594 5 Create network socket
1,242 144 Terminate process or thread group

TABLE VI. TOP FIVE MOST COMMON ACTIONS PERFORMED BY APPS
THAT CALLED STANDARD BINARIES IN THE SYSTEM. FOR THE

INTERESTED READER, WE REPORT THE FULL VERSION OF THIS TABLE
IN [1].

Apps Description
19,749 Read system information
3,384 Write file in the app’s directory or in the sdcard
3,362 Read logcat
1,041 List running processes
861 Read system property

The top five most common actions performed by apps in
native methods, native activities, and custom binaries called
through Exec are presented in Table V. Table VI presents the
top five most common actions performed by the apps that used
Exec to call standard (system) binaries.

By analyzing the system calls and the Java methods called
from native code, we identified 3,669 apps that perform
an action requiring Android permissions from native code.
Table VII presents the top five most popular permissions used,
how many apps use them, and how we detected its use. We
used PScout [6] to compute the permissions required by each
Java method. Comparing the permissions used in native code
with the permissions requested by the app, we found that only
81 apps use, in native code, all the permissions requested by
the app.

In addition to this being the first concrete look into how
many apps use native code and what that native code does, we
can draw two important conclusions: (1) if the native code is
separated in a different process, it is necessary to give some
permissions to the native code and (2) the permissions of
the native code can be more strict (less permissive) than the
permissions of the Java code.

It is interesting to note how conclusion (1) shows that
the drastic measure adopted in NativeGuard [35], which
does not grant any permissions to the native code, would
break 3,669 of apps. This observation reinforces even
more our belief that security policies should be gener-
ated following a data-driven approach. For instance, a rea-
sonable tradeoff would be to allow to the native code
only the INTERNET, WRITE_EXTERNAL_STORAGE, and
READ_EXTERNAL_STORAGE permissions (the three most
commonly used in native code), thus blocking only 152
applications.

B. Java—Native Code Interactions

To better understand the performance implications of sep-
arating the native code from the Java code of the apps, we
measured the number of interactions per millisecond between
Java and native code, i.e., the number of calls to JNI functions,
calls to native methods, and Binder transactions.

The mean of interactions per millisecond is 0.00142,
whereas the variance is 0.00003 and the maximum value
is 0.22. NativeGuard’s [35] performance evaluation with the
Zlib benchmark shows a 34.36% runtime overhead for 9.81
interactions per millisecond and 26.64% for 3.96 interactions
per millisecond. Therefore, our experiment shows that isolating

6

TABLE VII. THE FIVE MOST COMMON (BY NUMBER OF APPS) ACTIONS IN NATIVE CODE THAT REQUIRE ANDROID PERMISSION. FOR THE INTERESTED
READER, WE REPORT THE FULL VERSION OF THIS TABLE IN [1].

Apps Permission Description
1,818 INTERNET Open network socket or call method java.net.URL.openConnection
1,211 WRITE EXTERNAL STORAGE Write files to the sdcard
1,211 READ EXTERNAL STORAGE Read files from the sdcard
132 READ PHONE STATE Call methods getSubscriberId, getDeviceSoftwareVersion,

getSimSerialNumber or getDeviceId from class
android.telephony.TelephonyManager or Binder transaction to call
com.android.internal.telephony.IPhoneSubInfo.getDeviceId

79 ACCESS NETWORK STATE Call method android.net.ConnectivityManager.getNetworkInfo

TABLE VIII. TOP FIVE MOST COMMON TYPES OF COMMAND PASSED
WITH THE “-C” ARGUMENT TO SU , SEPARATED BETWEEN THE APPS THAT
MENTION THEY NEED ROOT PRIVILEGES IN THEIR DESCRIPTION OR NAME
AND THE ONES THAT DO NOT MENTION IT. FOR THE INTERESTED READER,

WE REPORT THE FULL VERSION OF THIS TABLE IN [1].

Does not
Mention

Root

Does
Mention

Root
Description

12 10 Custom executable (e.g.,
su -c sh /data/data/com.test.etd062.ct/files/occt.sh)

1 13 Reboot
2 12 Read system information
1 8 Change permission of file in app’s direc-

tory
1 7 Remove file in app’s directory

native code in a different process should not have a substantial
performance impact on average.

Additionally, we measure the number of bytes exchanged
between the Java code and native code per second. The mean
of bytes exchanged per second is 1,956.55 (1.91 KB/s) and the
maximum value is 6,561,053.27 (6.26 MB/s). Only 11 apps
exchanged more than 1 MB/s. We believe the amount of data
exchanged between Java and native code would not incur a
significant overhead, although it could vary greatly depending
on the specific app.

C. Usage of the su Binary

Unlike common Linux distributions, in Android, users do
not have access to a super user account and, therefore, are
prevented from performing certain actions, such as uninstalling
pre-installed apps. Thus, to have greater control over the
system, many users perform a process known as “rooting,” to
be able to perform actions as the “root” user. Usually, during
this process, a suid executable file called su is installed, as
well as a manager app that restricts which apps can use this
binary to perform actions as root. Because this process is
so common among users, there are many apps that provide
functionality that can only be performed by the root user,
such as changing the fonts of the system or changing the DNS
configuration.

Our analysis identified 1,137 apps that try to run su.
Surprisingly, 28.23% (321) of these apps do not mention in
their description or in their name that they need root privileges.

Some of these apps use the “-c” argument of su to specify
a command to be executed as root. Table VIII presents the top

five most common types of actions that these apps tried to
execute using su, along with the number of apps that attempt
to execute that command, and if the app mentioned that it
requires root or not. This table gives insights into what the
app is trying to accomplish as root. The table shows that
the most common action used with the “-c” argument of su
is calling a custom executable. Because apps cannot use su
in the emulator, these actions did not work properly during
dynamic analysis, so we cannot obtain more information on
their behavior.

D. JNI Calls Statistics

Understanding the JNI functions called by native code can
reveal how the native components of apps interact with the app
and the Android framework. Table IX presents the types of JNI
functions that were used by the apps and how many apps used
them. The most relevant actions for security considerations in
this table are: (1) calling Java methods and (2) modifying fields
of objects. Calling methods in Java libraries from native code
can be used to avoid detection by static analysis. Moreover,
modifying fields of Java objects can change the execution of
the Java code in ways that static analysis cannot foresee.

Calling Java methods, both from the Android framework
and from the app can be performed by some of the methods
presented in Table II, more precisely the ones whose name
starts with “Call.” As Table IX shows, we identified 35,231
apps that have native code which calls Java methods. More
specifically, 24,386 apps used these functions to call Java
methods from the app and 25,618 apps used them to call Java
methods from the framework. Table X presents what groups
of methods from the framework were called, along with the
amount of apps that called methods in each group.

E. Binder Transactions

1.64% (2,457) of the apps that reached native code during
dynamic analysis performed Binder transactions. Table XI
presents the top five most commonly invoked classes of the
remote methods. The most common class remotely invoked
by this process is IServiceManager, which can be used
to list services, add a service, and get an object to a Binder
interface. All apps that used this class obtained an object to a
Binder interface and two apps also used it to list services. This
data shows that using Binder transactions from native code is
not common. From a security perspective this is good as the
use of Binder transactions represent a way in which native
code can perform critical actions while staying undetected by
static analysis.

7

TABLE IX. GROUPS OF JNI CALLS USED FROM NATIVE CODE.

Apps Description
94,543 Get class or method identifier and class reference
71,470 Get or destroy JavaVM, and Get JNIEnv
53,219 Manipulation of String objects
49,321 Register native method
45,773 Manipulate object reference
41,892 Thread manipulation
35,231 Call Java method
19,372 Manipulate arrays
18,601 Manipulate exceptions
14,330 Create object instance
6,918 Modify field of an object
2,203 Manipulate direct buffers

47 Memory allocation
37 Enter or exit monitor

TABLE X. TOP 10 GROUPS OF JAVA METHODS FROM THE ANDROID
FRAMEWORK CALLED FROM NATIVE CODE.

Apps Description

7,423 Get path to the Android
package associated with the context of the caller

6,896 Get class name
5,499 Manipulate data structures
4,082 Methods related to cryptography
3,817 Manipulate native types
3,769 Read system information
3,018 Audio related methods
2,070 Read app information
1,192 String manipulation and encoding
575 Input/output related methods
483 Reflection

F. Usage of External Libraries

Understanding the libraries used by the apps in native code
can help us comprehend their purpose. Table XII presents the
top 10 most used system libraries and Table XIII presents the
top 10 must used custom libraries by apps in native code. It
demonstrates that apart from the bitmap manipulation library,
which was used by 16.6% (24,942) of the apps that reached
native code, no standard library was used by a great number
of apps. On the other hand, several custom libraries were used
by more than 7.5% of the apps that executed native code.

V. SECURITY POLICY GENERATION

One step to limit the possible damage that native code
can do is to isolate it from the Java code using the native
code sandboxing mechanisms discussed in Section II-D. These

TABLE XI. TOP FIVE MOST COMMON CLASSES OF THE METHODS
INVOKED THROUGH BINDER TRANSACTIONS. FOR THE INTERESTED

READER, WE REPORT THE FULL VERSION OF THIS TABLE IN [1].

Apps Class

2,427 android.os.IServiceManager
740 android.media.IAudioFlinger
725 android.media.IAudioPolicyService
327 android.gui.IGraphicBufferProducer
303 android.gui.SensorServer

TABLE XII. TOP 10 MOST USED STANDARD LIBRARIES.

Apps Name Description

24,942 libjnigraphics.so Manipulate Java
bitmap objects

2,646 libOpenSLES.so Audio input and output

2,645 libwilhelm.so Multimedia output
and audio input

349 libpixelflinger.so Graphics rendering
347 libGLES android.so Graphics rendering

183 libGLESv1 enc.so Encoder for GLES 1.1
commands

183 gralloc.goldfish.so Memory allocation
for graphics

182 libOpenglSystemCommon.so Common functions
used by OpenGL

182 libGLESv2 enc.so Encoder for GLES 2.0
commands

181 lib renderControl enc.so Encoder for rendering
control commands

TABLE XIII. TOP 10 MOST USED CUSTOM LIBRARIES.

Apps Name Description
19,158 libopenal.so Rendering audio
17,343 libCore.so Used by Adobe AIR
16,450 libmain.so Common name
13,556 libstlport shared.so C++ standard libraries
11,486 libcorona.so Part of the Corona SDK, a devel-

opment platform for mobile apps
11,480 libalmixer.so Audio API of the Corona SDK
11,458 libmpg123.so Audio library
11,090 libmono.so Mono library, used to run .NET

on Android
10,857 liblua.so Lua interpreter
10,408 libjnlua5.1.so Lua interpreter

mechanisms prevent native code from modifying Java code,
which allows static analysis of the Java part to produce
more reliable results. However, this is not enough, considering
that the app can still perform dangerous actions—that is, by
interacting with the Android framework/libraries and by using
system calls to execute root exploits.

Our goal here is to reduce the attack surface available to
native code, by restricting the system calls and Java methods
that native code can access. In particular, we propose to use
our dynamic analysis system to generate security policies. A
security policy represents the normal behavior, which can be
seen as a sort of whitelist that represents the syscalls and
Java methods that are normally executed from within native
code components of benign applications. These policies also
implicitly identify which syscalls and Java methods should be
considered as unusual or suspicious (as they do not belong to
the common syscalls), such as the ones used to mount root
exploits.

One aspect to be considered is what action is taken when
an unusual syscall is executed. Similar to the design choice
adopted by SELinux, we envision two modes: permissive and
enforcing. In permissive mode, the system would log and
report the usage of unusual behavior, while in enforcing mode
the system would block the execution of such unusual behavior

8

and stop the application. Depending on the context, it might
make sense to use permissive or the more aggressive enforcing
mode. As an alternative, one could selectively pick permissive
or enforcing mode depending on whether the unusual syscall is
well-known to be used by root exploits. The policy generation
process for syscalls is described in Section V-A, while the one
for Java methods is described in Section V-B. We discuss the
possibilities and the implications of this choice in Section VI.

It is worth noting that while this will not guarantee perfect
protection from attacks, by applying the security principle of
least privilege to the native code, we gain the dual security
benefits of (1) increasing the precision of Java static analysis
and (2) reducing the impact of malicious native code.

A. System Calls

Based on the system calls performed by the apps in
native methods, in native activities, during libraries loading,
and by programs executed by Exec methods, our system can
automatically generate a security policy of allowed system
calls. To compile this list, we first normalize the parameters
of the system calls and later iterate over them, selecting the
ones performed by most apps, until the list of selected system
calls is comprehensive enough to allow at least a (variable
threshold) percentage of the apps that executed native code
to run properly. In Android, inter-process communication is
done through Binder. Native code can directly use Binder
transactions to call methods implemented by system services.
At the system call level, these calls are performed by the
using the ioctl system call. To consider these actions in our
automatically generated whitelist, we substitute ioctl calls
to Binder with the Binder transactions performed by the apps.

To understand the possible policies that could be generated,
we performed this process using a threshold (the percentage
of apps that use native code whose dynamically-executed
behavior would function properly when enforcing this policy)
of 99%. Table XIV presents the actions obtained by this
procedure. The system call arguments that were normalized
were replaced by symbols in the form <*> and * (meaning
anything). Some of the arguments that are file descriptors were
changed to a file path representation of it. All arguments that
were not normalized represent a numeric value or a constant
value that was converted by strace to a string representation.
For the system calls that do not have the arguments next to
it in the policies, the policy accepts calls with any arguments.
Table XV presents more details about the symbols used.

To better understand which types of apps would be blocked
by our example policy (when in enforcing mode), we studied
them and manually analyzed a subset of them. The findings of
this analysis are presented in Section VI.

The policies restrict the possible actions of native code,
thus following the principle of least privilege and making it
harder for malicious apps to function. Previously, malicious
code could easily hide in native code to evade static anal-
ysis. With our example policies enforced by a sandboxing
mechanism, the native code does not (depending on the exact
threshold) have the ability to perform any malicious actions
in native code, and therefore attackers will have to move the
malicious behavior to the Java code, where it can be found by
existing Java static analysis tools. Furthermore, the policies do

not prevent the correct execution of the dynamically-executed
behavior of many benign apps. Using the rules generated
with the 99% threshold, only 1,483 apps (0.12% of the total
apps in our dataset) would be affected. Of course, as the
dynamic analysis performed by our system is incomplete (in
that it can not execute all possible app code), this number
is a lower bound. This can be alleviated by an organization
wishing to use our system in one of two ways: (1) increase
the completeness of the dynamic analysis or (2) deploying the
sandboxing enforcement mechanism in reporting mode. Both
choices will reveal more app behaviors.

Another benefit of enforcing a native code sandboxing
policy is that it would prevent the correct execution of several
root exploits. For this work, we considered the 13 root exploits
reported in Table XVI. These exploits require native code to
be successful. Our example security policy would hinder the
execution of 10 of them. This follows because the policies
attempt to reduce the attack surface of the OS for native code,
while at the same time maintaining backward compatibility.
Table XVI presents which of the considered exploits are
successfully blocked, along with which entry of the policy
they violate.

The root exploits that are prevented by our example
security policy are blocked due to rules related to four
system calls, namely socket, perf_event_open,
symlink, and ioctl. More precisely, two exploits
need to create sockets with PF_NETLINK domain and
NETLINK_KOBJECT_UEVENT (15) protocol, however, the
rules only allow PF_NETLINK sockets with protocol 0.
One of the exploits needs the perf_event_open system
call, which is not allowed by the policy. Two exploits
need to create symbolic links that target system files or
directories, but the policy only allows symbolic links to
target “USER-PATH,” which means files or directories in
the app’s directory or in the SD Card. Finally, five exploits
use ioctl to communicate with a device. One of the rules
allows ioctl calls to any device, namely ioctl(<NON
STD FD>,SNDCTL_TMR_TIMEBASE or TCGETS,*).
However, this rule specifies the valid request value (the
second parameter), whereas the exploits use different values,
therefore they would be blocked.

The table also reports the details about the three exploits
that would not be currently blocked. In one case (CVE-2011-
1149), the exploit would still work because our example policy
allows the invocation of the mprotect syscall, since it is used
by benign applications. In the two remaining cases (RATC
and Zimperlinch), the exploits rely on repeatedly invoking the
fork syscall to exhaust the number of available processes.
The fork syscall is allowed by our policy as some benign
applications do use it. However, note that this kind of exploit
could be blocked by a security policy that would take into
account the frequency of invocations of a given syscall: In fact,
no benign application would ever invoke the fork syscall so
frequently. We believe that considering this additional aspect
of native code behavior is a very interesting direction for future
work.

Although our example security policy does not block all
exploits, we believe the adoption of native sandboxing to
be useful. In fact, it does sensibly reduce the attack surface
available to native code components, and it is able to success-

9

TABLE XIV. ALLOWED SYSTEM CALLS AUTOMATICALLY GENERATED USING A THRESHOLD OF 99% APPS UNAFFECTED BY THE POLICY.

accept(*,*,*) access(<SYS-PATH>, F OK) access(<SYS-PATH>,R OK)
access(<SYS-PATH>, W OK) access(<SYS-PATH>,X OK) access(<USER-PATH>, F OK)

access(<USER-PATH>,R OK) access(<USER-PATH>,
R OK|W OK|X OK) bind

BINDER(android.os.IServiceManager.
CHECK SERVICE TRANSACTION) brk cacheflush(*,*,0,*,*)

cacheflush(*,*,0,0,*) chdir chmod(<USER-PATH>,*)
clone(child stack=*,flags=CLONE VM|CLONE FS|CLONE FILES|CLONE SIGHAND|CLONE THREAD|CLONE SYSVSEM)
connect(*,{sa family=AF UNIX,

path=@”jdwp-control”},*) connect(*,{sa family=AF INET,*,*},*) connect(*,{sa family=AF UNIX,
path=@”android:debuggerd”},*)

connect(*,{sa family=AF UNIX,
path=<SYS-PATH>},*) dup dup2

epoll create(*) epoll ctl(*,*,*,*) epoll wait
execve exit(<NEG INT>) exit(0)
exit group(<POS INT>) exit group(0) fcntl64(<NON STD FD>,F DUPFD,*)
fcntl64(<NON STD FD>,F GETFD) fcntl64(*,F GETFL) fcntl64(<NON STD FD>,F SETFD,*)
fcntl64(<NON STD FD>,F SETFL,*) fcntl64(<NON STD FD>,F SETLK,*) fdatasync(*)
fork fstat64 fsync(*)
ftruncate(*,*) futex getcwd
getegid32 geteuid32 getgid32
getpeername getpgid(0) getpid
getppid getpriority(PRIO PROCESS,*) getrlimit(RLIMIT DATA,*)
getrlimit(RLIMIT NOFILE,*) getrlimit(RLIMIT STACK,*) getrusage(RUSAGE CHILDREN,*)
getrusage(RUSAGE SELF,*) getsockname getsockopt(*,SOL SOCKET,SO ERROR,*,*)
getsockopt(*,SOL SOCKET,

SO PEERCRED,*,*) getsockopt(*,SOL SOCKET,SO RCVBUF,*,*) gettid

getuid32 ioctl(<ASHMEM-DEV>,*,*) ioctl(*,FIONBIO,*)
ioctl(<LOG-DEV>,*,*) ioctl(*,SIOCGIFADDR,*) ioctl(*,SIOCGIFBRDADDR,*)
ioctl(*,SIOCGIFCONF,*) ioctl(*,SIOCGIFFLAGS,*) ioctl(*,SIOCGIFHWADDR,*)

ioctl(*,SIOCGIFINDEX,*) ioctl(*,SIOCGIFNETMASK,*) ioctl(<STD IN/OUT/ERR>, SNDCTL TMR
TIMEBASE or TCGETS, *)

ioctl(*,SNDCTL TMR TIMEBASE
or TCGETS,*)

ioctl(<URANDOM-DEV>,
SNDCTL TMR TIMEBASE or TCGETS,*) listen

lseek(*,*,SEEK CUR) lseek(*,*,SEEK END) lseek(*,*,SEEK SET)
lstat64 madvise(*,*,MADV DONTNEED) madvise(*,*,MADV NORMAL)
madvise(*,*,MADV RANDOM) mkdir(<SYS-PATH>,*) mkdir(<USER-PATH>,*)
mmap2 mprotect mremap(*,*,*,MREMAP MAYMOVE)
munmap nanosleep open(<SYS-PATH>,*,*)
open(<SYS-PATH>,*) open(<USER-PATH>,*,*) open(<USER-PATH>,*)
pipe poll prctl(PR GET NAME,*,0,0,0)
prctl(PR SET NAME,*,*,*,*) prctl(PR SET NAME,*,*,*,0) prctl(PR SET NAME,*,0,0,0)
ptrace(PTRACE TRACEME,*,0,0) readlink(<USER-PATH>,*,*) recvfrom
recvmsg rename(<USER-PATH>,<USER-PATH>) rmdir(<USER-PATH>)
rt sigprocmask(SIG BLOCK,*,*,*) rt sigprocmask(SIG SETMASK,*,*,*) rt sigreturn(*)
rt sigtimedwait([QUITUSR1],

NULL, NULL, 8) sched getparam sched getscheduler

sched yield select sendmsg
sendto setitimer(ITIMER REAL,*,*) setpriority(PRIO PROCESS,*,<POS INT>)
setpriority(PRIO PROCESS,*,0) setrlimit(RLIMIT NOFILE,*) setsockopt(*,SOL IP,*,*,*)
setsockopt(*,SOL SOCKET,*,*,*) set tls(*,*,*,*,*) set tls(*,*,0,*,*)
sigaction sigprocmask(SIG BLOCK,*,*) sigprocmask(SIG SETMASK,*,*)
sigprocmask(SIG UNBLOCK,*,*) sigreturn sigsuspend([])
socket(PF INET,SOCK DGRAM,

IPPROTO ICMP)
socket(PF INET,SOCK DGRAM,

IPPROTO IP)
socket(PF INET,SOCK DGRAM,

IPPROTO UDP)
socket(PF INET,SOCK STREAM,

IPPROTO IP)
socket(PF INET,SOCK STREAM,

IPPROTO TCP) socket(PF NETLINK,SOCK RAW, 0)

socket(PF UNIX, SOCK STREAM, 0) stat64 statfs64(<SYS-PATH>,*)
statfs64(<USER-PATH>,*) symlink(<USER-PATH>,<USER-PATH>) tgkill(*,*,SIGTRAP)
umask uname unlink(<USER-PATH>)
utimes vfork wait4

10

TABLE XV. SYMBOLS USED TO REPLACE THE ARGUMENTS OF
SYSTEM CALLS.

<USER-PATH>
A file path in the apps’

directory or in the sdcard

<SYS-PATH>
A file path different than the

ones represented by <USER-PATH>
<URANDOM-DEV> “/dev/random” or “/dev/urandom”
<ASHMEM-DEV> “/dev/ashmem”

<LOG-DEV>
“/dev/log/system”, “/dev/log/main”,
“/dev/log/events” or “/dev/log/radio”

<NEG INT> A negative number
<STD IN/OUT/ERR> A file descriptor equal 0, 1, or 2
<NON STD FD> A file descriptor different than 0, 1, or 2
<POS INT> An integer greater than 0

fully block a number of root exploits. Similarly, we believe
that useful policies can be generated by our dynamic analysis
system that will be able to block future exploits.

B. Java Methods

Even with the system call restrictions, native code can still
perform dangerous actions by invoking Java methods. This can
be accomplished by using certain JNI functions, as discussed in
Section III-B. Static analysis of the Java component of apps
cannot identify these calls, therefore, the possibility of apps
calling methods in Java libraries poses a threat to the system
and can be abused by malicious apps.

We performed the same process presented in Section V-A
to automatically generate policies that restrict the use of
methods in Java libraries. Table XVII presents these policies,
using different values as the minimum percentage of allowed
apps that reached native code during dynamic analysis. We
used 97%, 98%, and 99% as the values for the minimum.
The methods authorized for each threshold include the ones
associated with lower thresholds.

Using the list of apps associated with a minimum of
allowed apps of 99% (the most permissive of our thresh-
olds), we would block 1,414 apps (0.12%). The method
java.lang.ClassLoader.loadClass, which is al-
lowed when using 99% as a threshold, causes the invocation
of the static initialization block (<clinit>) of a class.
Therefore, it could be used to execute the static initialization
block of classes in Java libraries. However, as far as we know,
these blocks do not contain important operations that need to
be contained.

VI. IMPACT OF SECURITY POLICIES

Considering both our policies—Java methods and system
calls—, and the 99% threshold, we would block 0.23% (2,730)
of all the apps in our dataset. To understand what the impact
of implementing (and enforcing with the strictest enforcement
mechanism) these policies would be on users, we analyzed the
popularity (lower number of installations) of the apps whose
behavior seen during the dynamic analysis would be blocked.
Figure 2 presents the cumulative distribution of the popularity
of the apps that would be blocked. As the figure shows, among
the applications for which our policy would block at least one
behavior that has been executed at runtime, 1.87% (51) of them
have more than 1 million installations.

Because manual analysis is very time-consuming, we did
not perform it on all blocked apps. However, we did a general

1e+00 1e+02 1e+04 1e+06 1e+08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of installs

1.87 % −> 1M+

Fig. 2. Popularity of apps that would be blocked by enforcing our policy.
X-axis is in logarithmic scale, and the Y -axis is the percentage of apps that
would be blocked.

investigation of the blocked apps and manually analyzed the
ones that showed traces of suspicious behavior. We identified
three types of suspicious activities among these apps, and we
discuss them here.

Ptrace. Overall, 280 apps used ptrace. 276 of these only
call ptrace to trace itself without checking the result. We
assume that the developers do this as a defensive measure to
prevent the analysis of the app, because an app cannot be
traced by another process if there is already a process tracing
it. Therefore, for these 276 apps we believe that the app’s
functionality would remain intact with our policy. Four apps,
on the other hand, create a child process, which try to attach
ptrace to the parent, checking the result of the call and
changing behavior if the call failed.
Modifying Java code. We identified 7 apps that modify the
Java section of the app from native code. All these apps per-
form this action from the library libAPKProtect.so [3].
This library is provided by an obfuscation service, thus making
it harder for reverse engineering tools to decompile the app.
This functionality can also be used by malicious apps and
illustrates the importance of isolating native code.
Fork and inotify. We identified 57 apps that create a child
process in native code and use inotify to monitor the apps’
directory, in order to identify when they are uninstalled. In fact,
the spawned child process uses inotify to detect when the
app is uninstalled and, when this happens, it opens a survey in
the browser. This behavior is not a malicious action; however,
executing code after being uninstalled is suspicious, as the user
does not expect the app to be running after being uninstalled.

VII. DYNAMIC COVERAGE

Dynamic analysis is inherently incomplete, and in this
section we attempt to measure the code coverage of the
dynamic analysis that we used, using function coverage of the

11

TABLE XVI. THIS TABLE SHOWS THE LIST OF CONSIDERED ROOT EXPLOITS, ON WHICH SYSCALL-LEVEL BEHAVIOR THEY RELY, AND WHICH
EXPLOITS ARE SUCCESSFULLY BLOCKED BY OUR POLICY.

Name / CVE Description Blocked
Exploid (CVE-2009-1185) Needs a NETLINK socket with NETLINK_KOBJECT_UEVENT protocol Yes

GingerBreak (CVE-2011-1823) Needs a NETLINK socket with NETLINK_KOBJECT_UEVENT protocol Yes
CVE-2013-2094 Uses perf_event_open system call Yes
Vold/ASEC [34] Creates symbolic link to a system directory Yes

RATC (CVE-2010-EASY) Relies on invoking many times the fork syscall No
CVE-2013-6124 Creates symbolic links to system files Yes
CVE-2011-1350 ioctl call used violates our rules Yes

Zimperlinch Relies on invoking many times the fork syscall No
CVE-2011-1352 ioctl call used violates our rules Yes
CVE-2011-1149 It relies on the mprotect syscall No
CVE-2012-4220 ioctl call used violates our rules Yes
CVE-2012-4221 ioctl call used violates our rules Yes
CVE-2012-4222 ioctl call used violates our rules Yes

TABLE XVII. LIST OF ALLOWED METHODS (JAVA METHODS CALLED
FROM NATIVE CODE) AUTOMATICALLY GENERATED FOR ALLOWING A

MINIMUM OF 97%, 98% AND 99% OF APPS THAT REACHED NATIVE CODE.

Allowed
apps (%) Method

97 java.lang.Integer.doubleValue
97 android.content.ContextWrapper.getPackageName
97 java.lang.String.getBytes
98 java.lang.Double.doubleValue
98 android.content.ContextWrapper.getClassLoader
98 android.content.ContextWrapper.getFilesDir
98 java.io.File.getPath
98 android.content.ContextWrapper.getExternalFilesDir
98 android.view.WindowManagerImpl.getDefaultDisplay
98 java.lang.String.toLowerCase
98 android.app.Activity.getWindowManager
98 java.util.ArrayList.add
98 android.view.Display.getMetrics
98 android.app.Activity.getWindow
98 android.view.View.getWindowVisibleDisplayFrame
98 java.util.Calendar.getInstance
98 android.view.View.getDrawingRect
99 java.util.Calendar.get
99 android.os.Bundle.getByteArray
99 android.content.ContextWrapper.getPackageManager
99 android.content.res.AssetManager$AssetInputStream.read
99 java.lang.Long.doubleValue
99 java.lang.ClassLoader.loadClass
99 android.app.ApplicationPackageManager.getPackageInfo
99 android.content.res.AssetManager$AssetInputStream.close
99 java.lang.Float.doubleValue
99 java.lang.Class.getClassLoader

Java code and function coverage of the native code. Both code
coverage methods have large overhead, so we were only able
to analyze a subset of the apps.

A. Java Method Code Coverage

To measure the code coverage based on the Java methods
executed, we instrumented the DVM. The instrumented code
records the execution of every method of the app under
analysis. Since this instrumentation introduces more overhead
and slows the emulator, we did the experiment with 25,000
apps randomly selected and used a kernel driver, instead
of strace, to record the system calls executed. The code
coverage obtained was 8.31%

B. Native Code Coverage

While code coverage of the Java methods allows us to
gain insight into the high level code coverage of our dynamic
analysis system, it does not shed light on the core issue we are
interested in: how much of an app’s native code is the dynamic
analysis able to execute? To answer this question, we modified
both the Android emulator and the Android framework to
support measuring function coverage of the native code.

One technical challenge here is that the native code cov-
erage must understand not only which native libraries are
loaded by an app, but also which part of the native library
is actually executed. Thus we need to: (1) trace the executed
native functions and (2) statically determine the total number
of native functions. This will allow us to calculate the function
coverage of the native code.

To the best of our knowledge, there is no previously
released tool to trace the execution of the native code of an app.
Android Open Source Project implements a tracing mechanism
since version 4.4. This tracing mechanism is implemented
using a kernel device called qemutrace that is part of the
goldfish kernel. The kernel send information to assist the
emulator to trace correctly the execution, e.g., the PID of the
running process each time there is a context switch, a message
that notifies that a fork or an execve is executed, etc. The whole
tracing system significantly slows down the performance of the
emulator. However, this tracing system is too general: we are
interested only in the execution of the native code of a specific
app. We need to trace only functions of loaded libraries of the
app under analysis.

For this reason, we created two ways to limit the tracing to
the interesting part only. First, we only want to trace processes
with a specific UID because each app in Android is executed
with it own UID. In addition, we are interested only in portions
of the executable memory where the native libraries have been
loaded.

To inform the emulator about the UID of the currently
executing process we leverage the existing qemutrace de-
vice. We added the UID into the message sent for each
context switch. To send the information about the map of
the memory to the emulator we cannot use the qemutrace
device, since it can only pass 32 bit integers as messages.

12

Moreover, we also need a mechanism to extract the libraries
from the emulated system. To solve both problems we instru-
mented the Android framework. We found that the function
java.lang.Runtime.doLoad is able to intercept all the
loading operations. Our hook inside the doLoad function
blocks the loading (and the app) while syncing all the gathered
data to the external emulator. The mapping of the memory and
the PID are read from /proc/self/. The path of the loaded
library is one of the parameters of the doLoad function.
Hence, when doLoad returns, the emulator knows the address
space reserved for the new library, and the content of the native
library.

After the dynamic execution, we compute the code cover-
age using all the data gathered during the execution. We use
IDA Pro to find all functions boundaries of libraries. Then, we
use the map of the memory to translate the virtual addresses
traced by the emulator. Next, we flag all the functions whose
boundaries include at least one address of the trace. The code
coverage is then calculated.

Our tracing system slows down the execution of the apps by
around 10 times. Therefore, we only ran it on a small subset
of the apps, more specifically, we analyzed 177. The code
coverage of most libraries is less that 1%. Some small libraries,
on the other hand, were covered by 100%. Furthermore,
the average coverage was 7%. More details about executed
libraries and coverage can be seen in Figure 3.

VIII. THREATS TO VALIDITY

Our study is affected by a few limitations, which we discuss
in this section. An intrinsic limitation of the automatically-
generated security policies is that we base their automatic
generation on data and insights obtained by means of dynamic
analysis, which is well-known to be incomplete and affected by
code coverage issues. In fact, dynamic analysis does not ensure
that all native code is exercised in the apps that actually use
it, and for those apps that used native code, dynamic analysis
may not have exercised all code paths in the native code.
Consequently, the policies that our tool generated might not be
complete, they might block more applications when adopted at
large-scale, and the performance overhead of isolating native
code could be higher. However, using a more-sophisticated
instrumentation tool could possibly improve the amount of
native code behavior that our system observes, or deploying
the automatically generated policies in a native sandbox with
reporting mode would help to observe the behaviors that the
policies would block.

Nonetheless, we believe this work to be a significant first
step in a very important direction. In fact, to the best of our
knowledge, this work is the first, largest, and most comprehen-
sive study on how real-world applications use native code. Our
results demonstrate that it is infeasible to adopt a completely
restrictive sandboxing policy. In addition, we propose a system
to automatically generate a native code sandboxing policy
following a data-driven approach. This system could be used
by large organizations that are interested in automatically
generating a native code sandboxing policy. Furthermore, the
completeness issues could possibly be addressed by increasing
the fidelity of the dynamic analysis, either through more
sophisticated analysis techniques or increased resources, or by

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Coverage

libnobexjni.so
libgsengine.so

libmonodroid.so
libOpenAL_android.so

libUtils.so
libapp_BaiduMapApplib_v2_1_2.so

librhodes.so
libBaiduMapSDK_v2_3_1.so

libaacdecoder.so
libqzAudio.so

libdictdroid.so
libCore.so

libkeygen.so
libDahuaEncrypt.so

libBMapApiEngine_v1_3_5.so
liblingsAudio.so

libstlport_shared.so
libeasy3d_utils.so

libyoyo.so
librompecabezascallofduty.so

libSimplePlayer.so
liblocSDK3.so

libfelpay.so
libDevStudio.so

libmain.so
libcabs.so

libcocos2dcpp.so
libCocoonJSLib.so

libvi_voslib.so
librompecabezashyorin.so

libadvanced_memory_booster_ii.so
libSFT.so

libjnlua5.1.so
libsoundpool.so

libgame.so
libopenal.so

libgideros.so
libobjc.so

libdevicescape-jni.so
libprivateProperty.so

libmame4all-jni.so
libgl2jni.so

libHealthGuide.so
libjnimain.so

libnarumiengine.so
libstarwisp-core.so

Li
b
ra

ry

3

2

11

1

1

2

1

1

6

1

1

41

1

1

3

2

16

2

9

1

1

1

1

1

1

1

5

3

2

1

1

1

20

43

13

13

1

1

1

1

1

1

1

1

1

1

Fig. 3. Per library coverage of executed functions. Horizontal axis contains
libraries name, vertical, instead contains the function coverage. For each bar
we also show the number of libraries that has been found in all executed
applications

obtaining the actual behavior of native code in the wild, by
instrumenting real-world Android devices.

Another limitation is that our approach restricts access to
permissions from native code, but it still allows the native
code to invoke (some) Java methods. This aspect would make,
in principle, Java-only analysis more precise, but still not
completely sound, as a malicious application could introduce
hidden execution paths by invoking a native method, which,
in turn, could invoke a Java method. However, we note that
our automatically-generated policy only allows native code to
invoke a very narrow subset of Java methods defined in the
Android framework (Table XVII), through which it is virtually
impossible to perform any security-sensitive operation. Thus,
our policy, although not perfect, would drastically reduce the
possibility of introducing malicious behaviors.

Lastly, we consider all the apps we obtained from Google
Play as benign, but we cannot be completely certain that there
are no malicious apps among them. The effects of having
malicious apps in our dataset vary depending on how the
malware works. In the worst case it could cause our policies
to allow some malicious actions.

IX. RELATED WORK

In this section we relate our work to the vast amount of
research published in the field of Android security.

13

Large Measurement Studies. Several works have analyzed
large datasets of Android apps, but with goals that differ
from ours. Viennot et al. [37] did a large measurement study
on 1,100,000 applications crawled from the Google Play app
store. In particular, they collected meta-data and statistics taken
from the Google Play store itself. As part of their study, they
measured the frequency with which Android applications make
use of native code components. Another important measure-
ment study has been performed by Lindorfer et al. [27]. In
their work, they analyzed 1,000,000 apps, of which 40% are
malware. To perform the analysis, the authors used Andrubis,
a publicly-available analysis system for Android apps that
combines static and dynamic analysis. When focusing on
native code, our work significantly extends their study.

Application Analysis Systems. Several systems have been
proposed to perform behavioral analysis of Android applica-
tions based on dynamic analysis [13], [14], [30], [31], [36],
[41]. Moreover, several other works have been proposed to
identify malicious Android apps [4], [9], [23]. Our analysis
complements all these research efforts by performing a large
scale study, based on dynamic analysis, specifically focused
on native code usage.

Protection Systems. Fedler et al. [15] proposes a protection
system from root exploits by preventing apps from giving
execution permission for custom executable files and by in-
troducing a permission related to the use of the System
class. PREC [24] is a framework intended to protect Android
systems from root exploits. PREC uses two steps, learning and
enforcement. During the learning phase, the analysis generates
a model of the normal behavior for a given app. Then, during
the enforcement phase, the system makes sure that the app
does not deviate from the normal behavior. Our work has the
advantage that the generated policies can be applied to all apps,
whereas PREC generates per-app models. Hence, our results
are more general. Moreover, our analysis also monitors, in
addition to system calls, JNI function calls, Binder transactions
and calls from Java to native methods.

Native Code Isolation. Another way to protect the system
is by isolating native code. The challenge of isolating native
code components used by managed languages has been exten-
sively studied. For instance, Klinkoff et al. [26] focus on the
isolation of .NET applications, whereas Robusta [33] focuses
on the isolation of native code used by Java applications.
Recently, NativeGuard [35] proposed a similar mechanism to
isolate native code in the context of Android. Our work is
complementary to these sandboxing mechanisms and fills the
knowledge gap necessary to define security policies on the
execution of native code in Android that are both usable in real-
world applications and effective in blocking malicious behavior
of native components.

X. CONCLUSION

While allowing developers to mix Java code and na-
tive code enables developers to fully harness the computing
power of mobile devices, we believe that, in the current
state, this feature does more harm than good and that native
code sandboxing is the correct approach to properly limit
its potentially malicious side-effects. However, a native code
sandboxing mechanism without a proper policy will never be

feasible. We hope that, in addition to shedding light on the
previously unknown native code usage of Android apps, this
paper demonstrates an approach to automatically generate an
effective and practical native code sandboxing policy.

ACKNOWLEDGMENT

This material is based upon work supported by CAPES
Foundation under Award No. BEX 12269/13-1, by NSF under
Award No. CNS-1408632, by DHS under Award No. 2009-ST-
061-CI0001, and by Secure Business Austria. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not nec-
essarily reflect the views of CAPES Foundation, NSF, DHS,
or Secure Business Austria.

This material is also based on research sponsored by
DARPA under agreement number FA8750-12-2-0101. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Govern-
ment.

REFERENCES

[1] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. de Geus,
C. Kruegel, and G. Vigna, “Full version of Tables 5, 6, 7, 8, and
11.” [Online] Available: https://github.com/ucsb-seclab/android going
native.

[2] AppBrain, “Number of Available Android Applications,” [Online]
Available: http://www.appbrain.com/stats/number-of-android-apps.

[3] A. Apvrille and R. Nigam, “Obfuscation in Android Malware, and How
to Fight Back,” in Virus Bulletin, 2014.

[4] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket,” in Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS), 2014.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android
Apps,” in Proceedings of 35th annual ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI), 2014.

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the
Android Permission Specification,” in Proceedings of the 2012 ACM
conference on Computer and Communications Security (CCS), 2012.

[7] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D. Schmidt,
and S. Albayrak, “Using Static Analysis for Automatic Assessment
and Mitigation of Unwanted and Malicious Activities Within Android
Applications,” in Proceedings of the 2011 6th International Conference
on Malicious and Unwanted Software (MALWARE), 2011.

[8] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: Splitting
Applications into Reduced-Privilege Compartments,” in Proceedings
of the 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2008.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
based Malware Detection System for Android,” in Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile
devices (SPSM), 2011.

[10] V. Chebyshev and R. Unuchek, “Mobile Malware Evolution:
2013,” [Online] Available: http://securelist.com/analysis/
kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/,
Feb. 2014.

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing Inter-
Application Communication in Android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services
(MobiSys), 2011.

14

[12] A. Desnos, “Androguard: Reverse Engineering, Malware and Goodware
Analysis of Android Applications... and More (Ninja!),” [Online] Avail-
able: https://code.google.com/p/androguard/.

[13] Droidbox, “Android Application Sandbox,” [Online] Available: https:
//code.google.com/p/droidbox/.

[14] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and
A. Sheth, “TaintDroid: an Information-flow Tracking System for Re-
altime Privacy Monitoring on Smartphones,” in Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2010.

[15] R. Fedler, M. Kulicke, and J. Schütte, “Native Code Execution Control
for Attack Mitigation on Android,” in Proceedings of the Third ACM
workshop on Security and privacy in smartphones & mobile devices
(SPSM), 2013.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” in Proceedings of the 18th ACM conference
on Computer and Communications Security (CCS), 2011.

[17] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated
Security Certification of Android Applications,” Manuscript, Univ. of
Maryland, http://www. cs. umd. edu/˜ avik/projects/scandroidascaa,
2009.

[18] C. Gibler, J. Crussel, J. Erickson, and H. Chen, “AndroidLeaks: De-
tecting Privacy Leaks in Android Applications,” Tech. rep., UC Davis,
Tech. Rep., 2011.

[19] Google, “Android NDK,” [Online] Available: https://developer.android.
com/tools/sdk/ndk/index.html.

[20] ——, “UI/Application Exerciser Monkey — Android Developers,” [On-
line] Available: http://developer.android.com/tools/help/monkey.html.

[21] R. Gordon, Essential JNI: Java Native Interface. Prentice-Hall, Inc.,
1998.

[22] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic Detection of
Capability Leaks in Stock Android Smartphones,” in Proceedings of
the 19th Annual Network and Distributed System Security Symposium
(NDSS), 2012.

[23] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
Scalable and Accurate Zero-Day Android Malware Detection,” in
Proceedings of the 10th international conference on Mobile systems,
applications, and services (MobiSys), 2012.

[24] T.-H. Ho, D. Dean, X. Gu, and W. Enck, “PREC: Practical Root Exploit
Containment for Android Devices,” in Proceedings of the 4th ACM
conference on Data and application security and privacy (CODASPY),
2014.

[25] IDC Corporate, “IDC: Smartphone OS Market Share 2014, 2013,
2012, and 2011,” [Online] Available: http://www.idc.com/prodserv/
smartphone-os-market-share.jsp.

[26] P. Klinkoff, E. Kirda, C. Kruegel, and G. Vigna, “Extending .NET
Security to Unmanaged Code,” International Journal of Information
Security, 2007.

[27] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later:
A View on Current Android Malware Behaviors,” in Proceedings of
the 3rd International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS), 2014.

[28] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities,” in Proceed-
ings of the 2012 ACM Conference on Computer and Communications
Security (CCS), 2012.

[29] C. Mann and A. Starostin, “A Framework for Static Detection of Privacy
Leaks in Android Applications,” in Proceedings of the 27th Annual

ACM Symposium on Applied Computing (SAC), 2012.
[30] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid

Android: Versatile Protection for Smartphones,” in Proceedings of the
26th Annual Computer Security Applications Conference (ACSAC),
2010, pp. 347–356.

[31] C. Qian, X. Luo, Y. Shao, and A. T. Chan, “On Tracking Information
Flows through JNI in Android Applications,” in Proceedings of the 44th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2014.

[32] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: Automatic Se-
curity Analysis of Smartphone Applications,” in Proceedings of the
third ACM conference on Data and application security and privacy
(CODASPY), 2013.

[33] J. Siefers, G. Tan, and G. Morrisett, “Robusta: Taming the Native Beast
of the JVM,” in Proceedings of the 17th ACM conference on Computer
and Communications Security (CCS), 2010.

[34] A. D. . Space, “Local Root Vulnerability in Android 4.4.2,”
[Online] Available: http://blog.cassidiancybersecurity.com/post/2014/
06/Android-4.4.3,-or-fixing-an-old-local-root.

[35] M. Sun and G. Tan, “NativeGuard: Protecting Android Applications
from Third-Party Native Libraries,” in Proceedings of the 2014 ACM
conference on Security and privacy in wireless & mobile networks
(WiSec), 2014.

[36] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic Reconstruction of Android Malware Behaviors,” in Pro-
ceedings of the 22nd Annual Network and Distributed System Security
Symposium (NDSS), 2015.

[37] N. Viennot, E. Garcia, and J. Nieh, “A Measurement Study of Google
Play,” in Proceedings of the 2014 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS), 2014.

[38] C. Warren, “Google Play Hits 1 Million Apps,” [Online] Available:
http://mashable.com/2013/07/24/google-play-1-million/, Jul. 2013.

[39] F. Wei, S. Roy, X. Ou et al., “Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting of
Android Apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2014.

[40] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,
V. van der Veen, and C. Platzer, “ANDRUBIS: Android Malware Under
The Magnifying Glass,” Vienna University of Technology, Tech. Rep.
TR-ISECLAB-0414-001, 2014.

[41] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,” in
Proceedings of the 21st USENIX Security Symposium, 2012.

[42] Z. Yang and M. Yang, “Leakminer: Detect Information Leakage on
Android with Static Taint Analysis,” in Proceedings of the 2012 Third
World Congress on Software Engineering (WCSE), 2012.

[43] Z. Zhao and F. C. C. Osono, “TrustDroid: Preventing the Use of
SmartPhones for Information Leaking in Corporate Networks Through
the Use of Static Analysis Taint Tracking,” in Proceedings of the 2012
7th International Conference on Malicious and Unwanted Software
(MALWARE), 2012.

[44] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets,” in Proceedings of the 19th Annual Network and Distributed
System Security Symposium (NDSS), 2012.

[45] Y. Zhou and X. Jiang, “Detecting Passive Content Leaks and Pollution
in Android Applications,” in Proceedings of the 20th Annual Network
and Distributed System Security Symposium (NDSS), 2013.

15

