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ABSTRACT
Cross-site scripting (XSS) is the most common vulnerability class in
web applications over the last decade. Much research attention has
focused on building exploit mitigation defenses for this problem, but
no technique provides adequate protection in the face of advanced
attacks. One technique that bypasses XSS mitigations is the script-
less attack: a content injection technique that uses (among other
options) CSS and HTML injection to infiltrate data. In studying this
technique and others, we realized that the common property among
the exploitation of all content injection vulnerabilities, including
not just XSS and scriptless attacks, but also command injections
and several others, is an unintended context switch in the victim
program’s parsing engine that is caused by untrusted user input.

In this paper, we propose Context-Auditor, a novel technique
that leverages this insight to identify content injection vulnerabili-
ties ranging from XSS to scriptless attacks and command injections.
We implemented Context-Auditor as a general solution to con-
tent injection exploit detection problem in the form of a flexible,
stand-alone detection module. We deployed instances of Context-
Auditor as (1) a browser plugin, (2) a web proxy (3) a web server
plugin, and (4) as a wrapper around potentially-injectable system
endpoints. Because Context-Auditor targets the root cause of
content injection exploitation (and, more specifically for the pur-
pose of our prototype, XSS exploitation, scriptless exploitation,
and command injection), our evaluation results demonstrate that
Context-Auditor can identify and block content injection exploits
that modern defenses cannot while maintaining low throughput
overhead and avoiding false positives.
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1 INTRODUCTION
Though rich, interactive, Web 2.0 applications are critical in en-
abling the modern web, they are also a critical attack vector on
the Internet. Web application vulnerabilities have significantly con-
tributed to the financial loss from cybersecurity issues over the
past years. Among vulnerabilities in web applications, cross-site
scripting (XSS) is the single most common type of vulnerability in
the past two years according to Bugcrowd [21] and Hackerone re-
ports [28]. In fact, since the release of the initial US-CERT Advisory
in 2000 [64], XSS is among the most critical web application security
threats every year, consistently appearing in “worst of” lists, such
as the OWASP Top 10 [49] and MITRE top 25 [46].

Research into XSS prevention andmitigation has continued since
XSS was first discovered. Existing approaches attempt to statically
identify XSS vulnerabilities in server-side code [32, 36, 68], ana-
lyze the use of server-side sanitization functions [18, 42], filter out
JavaScript code on the server side [24, 65], or attempt to detect the
presence of vulnerabilities from the client’s viewpoint [41, 45]. Yet,
XSS vulnerabilities continue to manifest in web applications. A dif-
ferent class of solutions attempt tomitigate XSS exploits rather than
detect the underlying vulnerabilities. These solutions include XSS
filters in browsers (e.g., NoScript for Firefox [26]), Content Security
Policy (CSP) [5], web application firewalls (e.g., ModSecurity [13]),
and server-side HTML sanitizers [31]. These mitigations are widely
adopted in practice (as we discuss in Section 2.2), however research
has shown that it is possible to bypass these defenses.

One particularly interesting bypass of XSS mitigations, called
scriptless attacks, generalizes the concept of XSS beyond the injec-
tion of JavaScript code [30]. Scriptless attacks inject data (such as
CSS, HTML 5, SVG, and font files) to compromise the security ofweb
applications, which, as a result, allows attackers to steal sensitive
information, even in a restricted environment without JavaScript
execution. Prior solutions that check if untrusted user input is used
in sensitive output functions (e.g., echo() or system()) [33, 36, 40], or
identify the mixing of code (HTML) and data (JavaScript) in the
same channel [24], do not work for scriptless attacks, as the notion
of code-data mixing is not fine-grained enough.
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These exploit techniques inspired us to examine the root cause of
XSS and scriptless attacks: Web applications embed into an HTML
page untrusted user input as pure data, such as strings and text,
with the intent that no part of the untrusted user input shall be
interpreted by the parser as non-data. However, this important
developer-intent is lost once the HTML code is generated and sent
to the browser: client-side parsers must re-discover the meaning
of every part of the page by parsing the HTML response. In car-
rying out XSS exploits, attackers exploit this loss of information
and mislead client-side parsers to transition from HTML parsing
to JavaScript or CSS parsing when parsing the user input, which
violates the developer’s original intent. For example, in an XSS ex-
ploit, an untrusted user input may cause a browser to transition
from parsing plain text in HTML to parsing JavaScript code with a
<script> tag. We term these context transitions in a parser context
switches, where “context” refers to the functionality of the token
being parsed. In fact, we argue that unintended context switches
are the root cause of a series of vulnerabilities including (among
others) XSS, scriptless attacks, command injection, SQL injection,
XML injection, and template injection. We refer to them as content
injection vulnerabilities throughout this paper.

Our insight is that, because these vulnerabilities share a common
root cause, exploits against them can be mitigated using a common
approach. In this paper, we introduce Context-Auditor, a novel,
general technique that detects content injection exploits by iden-
tifying unintended context switches, caused by untrusted input,
during parsing. This idea is inspired by Stock et al. [61], who used
context switches (tokenization-based) in the JavaScript parser to
detect DOM-based XSS exploits using a taint-tracking browser and
by other string-based [35] and taint-based [58] injection preven-
tion methods. Context-Auditor expands these ideas, generalizing
these concepts to the broader category of content injection exploits.

We implemented multiple prototypes of Context-Auditor in
various forms—including a shell wrapper, an nginx module, a web
proxy, and a Chrome extension—to detect content injection exploits
in shell commands, HTML, CSS, and JavaScript. We tested our
prototypes on reputable testing suites and comprehensive real-
world data sets, where Context-Auditor successfully detected
and blocked all reflected XSS, scriptless, and command injection
exploits in a number of web applications. Additionally, Context-
Auditor demonstrated negligible false positive rate in a live crawl
of the Alexa top-1000 websites.

Overall, this paper makes the following contributions:

• We reformulate the problem of defending against command injec-
tions, XSS, and scriptless attacks as a content injection mitigation
problem, and we focus on the root cause of content injection
exploitation, which is untrusted user input triggering a context
switch in parsers.

• We build a custom parser model that supports HTML, CSS,
JavaScript, and Bash scripts (and is extensible to other languages).
Context-Auditor uses this model to identify context switches
caused by untrusted user input, which indicates the exploitation
of a content injection vulnerability.

• We demonstrate that Context-Auditor can mitigate exploits
that state-of-the-art XSS mitigation techniques cannot, with low
false positive rates and reasonable throughput overhead.

In the spirit of open science, we will open source Context-
Auditor and publish the evaluation data and configurations to
guarantee experiment reproducibility [7].

2 BACKGROUND
In this section, we provide an overview of content injection exploits
that Context-Auditor aims to address along with an overview of
existing mitigation techniques.

2.1 Content Injection Vulnerabilities
A web application that allows the usage of user data with unin-
tended semantics in generating dynamic content is susceptible to
content injection vulnerabilities. Therefore, an attacker can com-
promise the security of the web application by sending an exploit
that leverages this vulnerability to perform developer unintended
actions. For instance, if user input is used to construct a string
that is then passed to a shell script command, an adversary can
construct an exploit using shell script control characters, such as
semicolon, to escape out of the current command and execute arbi-
trary commands. In another case, an attacker may alter the intended
semantics of a web page or execute arbitrary JavaScript code if a
web application uses user input to construct HTML response with-
out proper sanitization.
Web-based exploits. We classify content injection exploits that
manipulate the structure of an HTML response as web-based ex-
ploits, which are categorized into two groups: scripting exploits
and scriptless exploits. Listing 1 is an example of vulnerable PHP
code with three web-based content injection vulnerabilities (and
DOM-based XSS) in different contexts (HTML, JavaScript, and CSS),
and we will refer to it throughout the paper.

• Scripting exploits. Scripting exploits are a traditional and well-
known attack vector that involve the injection of malicious
JavaScript code into web pages. An example of scripting ex-
ploits is a cross-site scripting (XSS) exploit. Two of the vul-
nerabilities in the PHP code in Listing 1 can be exploited with
scripting exploits. Both are reflected XSS vulnerabilities: One
is in the HTML context on Line 21, and the other is in the
JavaScript context at Line 17. The first vulnerability on Line
21 can be exploited by a classic HTML-context XSS exploit:
<script>alert(’injection’);</script>. The second vulnerability on
Line 17 can be exploited by a JavaScript-context XSS exploit: Hi";
alert(’injection’);"There.

• Scriptless exploits. Scriptless exploits are another type of con-
tent injection exploits where attackers embed into the DOM tree
non-scripting elements (e.g., images or style sheets) that violate
security policies in browsers, most notably, CORS policies [30].
Listing 1 has a vulnerability on Line 5 that can be exploited
with a scriptless content injection exploit. Attackers can inject
a malicious CSS context exploit, such as the example exploit in
Listing 2, to leak the characters used in the secret Cross-Site
Request Forgery (CSRF) token.

Non-web-based exploits. Content injection exploits happen not
only in client-side web languages, but also in many other contexts,
such as SQL queries and shell commands. For the exec function
(Line 26 of Listing 1): the shell command includes a user-controlled
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string which enables an attacker to execute arbitrary shell com-
mands: sending Auditor; rm userinfo.txt to the web application
would cause it to remove the userinfo.txt file.Context-Auditor: Context-sensitive Content Injection Mitigation RAID 2022, October 26–28, 2022, Limassol, Cyprus

1 <html>
2 <body>
3 <style>
4 body{
5 background-color: <?php echo($_GET["color"])?>
6 }
7 </style>
8 <form action="index.php">
9 background Color :</td><td>
10 <input type="name" name="color" />
11 <input type="submit" value="Change Color" />
12 <input type="hidden"
13 name="CSRFToken" value="SECRET">
14 </form>
15 <script>
16 document.write("Username is: ");
17 var str = "<?php echo($_GET["id"])?>" ;
18 document.write("<text>"+str+"</text>");
19 </script>
20 <h2> You were searching for:
21 '<?php echo($_GET['term']) ?>'
22 </h2>
23 Here is the result:
24 <?php
25 $command= 'cat userinfo.txt | grep '. $_GET['term'];
26 echo(exec($command)); ?>
27 </body>
28 </html>

Listing 1: PHP code with three content injection vulnerabil-
ities (Line 5, Line 17, and Line 21 represent CSS, JavaScript
and HTML contexts respectively) in the server-side HTML
response, one DOM-based XSS vulnerability on Line 18 and
a content injection vulnerability in the form of command
injection on Line 26.

1 "} a[href*='A'] {
2 background: url(attacker.com?A); } ...
3 a[href*='S'] {
4 background: url(attacker.com?S); } ...
5 a[href*='Z'] {
6 background: url(attacker.com?Z);}
7 a[href*='A'][href*='A']{
8 background: url(attacker.com?AA); } ...
9 a[href*='S'][href*='E']{
10 background: url(attacker.com?SE); } ...
11 a[href*='S'][href*='E'][href*='C'][href*='R']{
12 background: url(attacker.com?SECR); }...

Listing 2: An exampleCSS context exploit used to exploit the
scriptless content injection vulnerability shown in Listing 1.

string which enables an attacker to execute arbitrary shell com-
mands: sending Auditor; rm userinfo.txt to the web application
would cause it to remove the userinfo.txt file.

2.2 Mitigations of Content Injection Exploits
Generally, there are four types of mitigations for web-based content
injection exploits (although thus far they have mostly focused on
XSS exploits), and all are bypassable [40]:
Browser-based XSS Filters. Some browsers have built-in XSS
detection and mitigation mechanisms to block malicious-looking
HTML requests and responses. NoScript [26] (for Firefox) is a pow-
erful browser XSS filter that is widely used. There is also a No-Script

1 <input id="RecaptchaClientUrl-"

value="//portswigger-labs.net/xss/xss.js" />↪→

Listing 3: An HTML tag injection proposed by Hayes [51]:
This exploit miss-uses a JavaScript gadget in a vulnerable
JavaScript code and bypasses nonce-based CSP policies.

Chrome extension [67]; it could be used as a temporary XSS miti-
gation measure after the retirement of XSS-Auditor [19] from the
Chrome browser. Detection capability of XSS filters is often limited
to pattern matching solutions that are defined by regular expres-
sions and they might become ineffective in the face of new exploits.
HTML Sanitizers. HTML sanitizers (e.g., DOMPurify [31]) are
libraries used by web application developers to sanitize HTML text
and filter (potentiallymalicious) content. The black-listing approach
of sanitizers is usually very conservative, as characters are sanitized
without a thorough understanding of their actual impact on the
semantics of a web page. For instance, not all < characters inside
HTML text are potentially harmful and need filtering. However,
sending a string containing < character to DOMPurify, results in
filtering of < and all of its following characters; although the original
string might not eventually cause any security violation in the web
application. Unsurprisingly, sanitization approaches cannot cover
all possible content injection exploits (e.g., DOMPurify does not
provide sanitization for JavaScript and CSS).
Content Security Policy (CSP).CSP is a white-listingmechanism
that adds directives into HTTP headers or meta tags, which specify
(among other things) the legitimate source of external resources
that a web page can embed. In this way CSP, when used correctly,
can mitigate many XSS exploits. While all modern browsers sup-
port CSP, it is not deployed properly by most web applications
in the wild, and also previous work has shown it to be insuffi-
cient to prevent all XSS exploits [23]. The application of strict CSP
policies, however, does not guarantee the security of a web applica-
tion in case the JavaScript code is already vulnerable. Hayes [51]
demonstrated a bypass of a nonce-based CSP policy for a vulner-
able JavaScript code with a flow from an HTML tag’s attribute
to a sensitive sink. Similar to the exploitation of JavaScript gad-
gets [40], an attacker can exploit such vulnerabilities via injection
of specially-crafted HTML tags into a webpage: JavaScript gadgets
misuse existing pieces of JavaScript code in the web application
to achieve their aim (alike return-oriented programming [54]). In
this vulnerable script, the attacker can modify the source of an
existing script tag (that has already been protected by nonce-based
CSP tokens) to the attribute value of an injected input tag shown
in Listing 3 and execute arbitrary JavaScript code. Our context
switching-based analysis prevents such HTML tag injections; on
the contrary, CSP prevents the injection of a limited set of HTML
tags.
Web Application Firewall (WAF).WAFs (e.g., ModSecurity [13])
attempt to detect malicious web requests and prevent them from
reaching back-end web applications. WAFs need to be manually
configured with a comprehensive set of rules or directives, compre-
hensibility of which correlates with WAFS detection capability. To
demonstrate this, we configured the ModSecurity with the OWASP
core rule set (CRS) [15], and it failed to detect a simple injection
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1 <html>
2 <body>
3 <style>
4 body{
5 background-color: <?php echo($_GET["color"])?>
6 }
7 </style>
8 <form action="index.php">
9 background Color :</td><td>
10 <input type="name" name="color" />
11 <input type="submit" value="Change Color" />
12 <input type="hidden"
13 name="CSRFToken" value="SECRET">
14 </form>
15 <script>
16 document.write("Username is: ");
17 var str = "<?php echo($_GET["id"])?>" ;
18 document.write("<text>"+str+"</text>");
19 </script>
20 <h2> You were searching for:
21 '<?php echo($_GET['term']) ?>'
22 </h2>
23 Here is the result:
24 <?php
25 $command= 'cat userinfo.txt | grep '. $_GET['term'];
26 echo(exec($command)); ?>
27 </body>
28 </html>

Listing 1: PHP code with three content injection vulnerabil-
ities (Line 5, Line 17, and Line 21 represent CSS, JavaScript
and HTML contexts respectively) in the server-side HTML
response, one DOM-based XSS vulnerability on Line 18 and
a content injection vulnerability in the form of command
injection on Line 26.

1 "} a[href*='A'] {
2 background: url(attacker.com?A); } ...
3 a[href*='S'] {
4 background: url(attacker.com?S); } ...
5 a[href*='Z'] {
6 background: url(attacker.com?Z);}
7 a[href*='A'][href*='A']{
8 background: url(attacker.com?AA); } ...
9 a[href*='S'][href*='E']{
10 background: url(attacker.com?SE); } ...
11 a[href*='S'][href*='E'][href*='C'][href*='R']{
12 background: url(attacker.com?SECR); }...

Listing 2: An exampleCSS context exploit used to exploit the
scriptless content injection vulnerability shown in Listing 1.

string which enables an attacker to execute arbitrary shell com-
mands: sending Auditor; rm userinfo.txt to the web application
would cause it to remove the userinfo.txt file.

2.2 Mitigations of Content Injection Exploits
Generally, there are four types of mitigations for web-based content
injection exploits (although thus far they have mostly focused on
XSS exploits), and all are bypassable [40]:
Browser-based XSS Filters. Some browsers have built-in XSS
detection and mitigation mechanisms to block malicious-looking
HTML requests and responses. NoScript [26] (for Firefox) is a pow-
erful browser XSS filter that is widely used. There is also a No-Script

1 <input id="RecaptchaClientUrl-"

value="//portswigger-labs.net/xss/xss.js" />↪→

Listing 3: An HTML tag injection proposed by Hayes [51]:
This exploit miss-uses a JavaScript gadget in a vulnerable
JavaScript code and bypasses nonce-based CSP policies.

Chrome extension [67]; it could be used as a temporary XSS miti-
gation measure after the retirement of XSS-Auditor [19] from the
Chrome browser. Detection capability of XSS filters is often limited
to pattern matching solutions that are defined by regular expres-
sions and they might become ineffective in the face of new exploits.
HTML Sanitizers. HTML sanitizers (e.g., DOMPurify [31]) are
libraries used by web application developers to sanitize HTML text
and filter (potentiallymalicious) content. The black-listing approach
of sanitizers is usually very conservative, as characters are sanitized
without a thorough understanding of their actual impact on the
semantics of a web page. For instance, not all < characters inside
HTML text are potentially harmful and need filtering. However,
sending a string containing < character to DOMPurify, results in
filtering of < and all of its following characters; although the original
string might not eventually cause any security violation in the web
application. Unsurprisingly, sanitization approaches cannot cover
all possible content injection exploits (e.g., DOMPurify does not
provide sanitization for JavaScript and CSS).
Content Security Policy (CSP).CSP is a white-listingmechanism
that adds directives into HTTP headers or meta tags, which specify
(among other things) the legitimate source of external resources
that a web page can embed. In this way CSP, when used correctly,
can mitigate many XSS exploits. While all modern browsers sup-
port CSP, it is not deployed properly by most web applications
in the wild, and also previous work has shown it to be insuffi-
cient to prevent all XSS exploits [23]. The application of strict CSP
policies, however, does not guarantee the security of a web applica-
tion in case the JavaScript code is already vulnerable. Hayes [51]
demonstrated a bypass of a nonce-based CSP policy for a vulner-
able JavaScript code with a flow from an HTML tag’s attribute
to a sensitive sink. Similar to the exploitation of JavaScript gad-
gets [40], an attacker can exploit such vulnerabilities via injection
of specially-crafted HTML tags into a webpage: JavaScript gadgets
misuse existing pieces of JavaScript code in the web application
to achieve their aim (alike return-oriented programming [54]). In
this vulnerable script, the attacker can modify the source of an
existing script tag (that has already been protected by nonce-based
CSP tokens) to the attribute value of an injected input tag shown
in Listing 3 and execute arbitrary JavaScript code. Our context
switching-based analysis prevents such HTML tag injections; on
the contrary, CSP prevents the injection of a limited set of HTML
tags.
Web Application Firewall (WAF).WAFs (e.g., ModSecurity [13])
attempt to detect malicious web requests and prevent them from
reaching back-end web applications. WAFs need to be manually
configured with a comprehensive set of rules or directives, compre-
hensibility of which correlates with WAFS detection capability. To
demonstrate this, we configured the ModSecurity with the OWASP
core rule set (CRS) [15], and it failed to detect a simple injection

2.2 Mitigations of Content Injection Exploits
Generally, there are four types of mitigations for web-based content
injection exploits (although thus far they have mostly focused on
XSS exploits), and all are bypassable [40]:
Browser-based XSS Filters. Some browsers have built-in XSS
detection and mitigation mechanisms to block malicious-looking
HTML requests and responses. NoScript [26] (for Firefox) is a pow-
erful browser XSS filter that is widely used. There is also a No-Script
Chrome extension [67]; it could be used as a temporary XSS miti-
gation measure after the retirement of XSS-Auditor [19] from the

Chrome browser. Detection capability of XSS filters is often limited
to pattern matching solutions that are defined by regular expres-
sions and they might become ineffective in the face of new exploits.
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1 <html>
2 <body>
3 <style>
4 body{
5 background-color: <?php echo($_GET["color"])?>
6 }
7 </style>
8 <form action="index.php">
9 background Color :</td><td>
10 <input type="name" name="color" />
11 <input type="submit" value="Change Color" />
12 <input type="hidden"
13 name="CSRFToken" value="SECRET">
14 </form>
15 <script>
16 document.write("Username is: ");
17 var str = "<?php echo($_GET["id"])?>" ;
18 document.write("<text>"+str+"</text>");
19 </script>
20 <h2> You were searching for:
21 '<?php echo($_GET['term']) ?>'
22 </h2>
23 Here is the result:
24 <?php
25 $command= 'cat userinfo.txt | grep '. $_GET['term'];
26 echo(exec($command)); ?>
27 </body>
28 </html>

Listing 1: PHP code with three content injection vulnerabil-
ities (Line 5, Line 17, and Line 21 represent CSS, JavaScript
and HTML contexts respectively) in the server-side HTML
response, one DOM-based XSS vulnerability on Line 18 and
a content injection vulnerability in the form of command
injection on Line 26.

1 "} a[href*='A'] {
2 background: url(attacker.com?A); } ...
3 a[href*='S'] {
4 background: url(attacker.com?S); } ...
5 a[href*='Z'] {
6 background: url(attacker.com?Z);}
7 a[href*='A'][href*='A']{
8 background: url(attacker.com?AA); } ...
9 a[href*='S'][href*='E']{
10 background: url(attacker.com?SE); } ...
11 a[href*='S'][href*='E'][href*='C'][href*='R']{
12 background: url(attacker.com?SECR); }...

Listing 2: An exampleCSS context exploit used to exploit the
scriptless content injection vulnerability shown in Listing 1.

string which enables an attacker to execute arbitrary shell com-
mands: sending Auditor; rm userinfo.txt to the web application
would cause it to remove the userinfo.txt file.

2.2 Mitigations of Content Injection Exploits
Generally, there are four types of mitigations for web-based content
injection exploits (although thus far they have mostly focused on
XSS exploits), and all are bypassable [40]:
Browser-based XSS Filters. Some browsers have built-in XSS
detection and mitigation mechanisms to block malicious-looking
HTML requests and responses. NoScript [26] (for Firefox) is a pow-
erful browser XSS filter that is widely used. There is also a No-Script

1 <input id="RecaptchaClientUrl-"

value="//portswigger-labs.net/xss/xss.js" />↪→

Listing 3: An HTML tag injection proposed by Hayes [51]:
This exploit miss-uses a JavaScript gadget in a vulnerable
JavaScript code and bypasses nonce-based CSP policies.

Chrome extension [67]; it could be used as a temporary XSS miti-
gation measure after the retirement of XSS-Auditor [19] from the
Chrome browser. Detection capability of XSS filters is often limited
to pattern matching solutions that are defined by regular expres-
sions and they might become ineffective in the face of new exploits.
HTML Sanitizers. HTML sanitizers (e.g., DOMPurify [31]) are
libraries used by web application developers to sanitize HTML text
and filter (potentiallymalicious) content. The black-listing approach
of sanitizers is usually very conservative, as characters are sanitized
without a thorough understanding of their actual impact on the
semantics of a web page. For instance, not all < characters inside
HTML text are potentially harmful and need filtering. However,
sending a string containing < character to DOMPurify, results in
filtering of < and all of its following characters; although the original
string might not eventually cause any security violation in the web
application. Unsurprisingly, sanitization approaches cannot cover
all possible content injection exploits (e.g., DOMPurify does not
provide sanitization for JavaScript and CSS).
Content Security Policy (CSP).CSP is a white-listingmechanism
that adds directives into HTTP headers or meta tags, which specify
(among other things) the legitimate source of external resources
that a web page can embed. In this way CSP, when used correctly,
can mitigate many XSS exploits. While all modern browsers sup-
port CSP, it is not deployed properly by most web applications
in the wild, and also previous work has shown it to be insuffi-
cient to prevent all XSS exploits [23]. The application of strict CSP
policies, however, does not guarantee the security of a web applica-
tion in case the JavaScript code is already vulnerable. Hayes [51]
demonstrated a bypass of a nonce-based CSP policy for a vulner-
able JavaScript code with a flow from an HTML tag’s attribute
to a sensitive sink. Similar to the exploitation of JavaScript gad-
gets [40], an attacker can exploit such vulnerabilities via injection
of specially-crafted HTML tags into a webpage: JavaScript gadgets
misuse existing pieces of JavaScript code in the web application
to achieve their aim (alike return-oriented programming [54]). In
this vulnerable script, the attacker can modify the source of an
existing script tag (that has already been protected by nonce-based
CSP tokens) to the attribute value of an injected input tag shown
in Listing 3 and execute arbitrary JavaScript code. Our context
switching-based analysis prevents such HTML tag injections; on
the contrary, CSP prevents the injection of a limited set of HTML
tags.
Web Application Firewall (WAF).WAFs (e.g., ModSecurity [13])
attempt to detect malicious web requests and prevent them from
reaching back-end web applications. WAFs need to be manually
configured with a comprehensive set of rules or directives, compre-
hensibility of which correlates with WAFS detection capability. To
demonstrate this, we configured the ModSecurity with the OWASP
core rule set (CRS) [15], and it failed to detect a simple injection

HTML Sanitizers. HTML sanitizers (e.g., DOMPurify [31]) are
libraries used by web application developers to sanitize HTML text
and filter (potentiallymalicious) content. The black-listing approach
of sanitizers is usually very conservative, as characters are sanitized
without a thorough understanding of their actual impact on the
semantics of a web page. For instance, not all < characters inside
HTML text are potentially harmful and need filtering. However,
sending a string containing < character to DOMPurify, results in
filtering of < and all of its following characters; although the original
string might not eventually cause any security violation in the web
application. Unsurprisingly, sanitization approaches cannot cover
all possible content injection exploits (e.g., DOMPurify does not
provide sanitization for JavaScript and CSS).
Content Security Policy (CSP).CSP is a white-listingmechanism
that adds directives into HTTP headers or meta tags, which specify
(among other things) the legitimate source of external resources
that a web page can embed. In this way CSP, when used correctly,
can mitigate many XSS exploits. While all modern browsers sup-
port CSP, it is not deployed properly by most web applications
in the wild, and also previous work has shown it to be insuffi-
cient to prevent all XSS exploits [23]. The application of strict CSP
policies, however, does not guarantee the security of a web applica-
tion in case the JavaScript code is already vulnerable. Hayes [51]
demonstrated a bypass of a nonce-based CSP policy for a vulner-
able JavaScript code with a flow from an HTML tag’s attribute
to a sensitive sink. Similar to the exploitation of JavaScript gad-
gets [40], an attacker can exploit such vulnerabilities via injection
of specially-crafted HTML tags into a webpage: JavaScript gadgets
misuse existing pieces of JavaScript code in the web application
to achieve their aim (alike return-oriented programming [54]). In
this vulnerable script, the attacker can modify the source of an
existing script tag (that has already been protected by nonce-based
CSP tokens) to the attribute value of an injected input tag shown
in Listing 3 and execute arbitrary JavaScript code. Our context
switching-based analysis prevents such HTML tag injections; on
the contrary, CSP prevents the injection of a limited set of HTML
tags.
Web Application Firewall (WAF).WAFs (e.g., ModSecurity [13])
attempt to detect malicious web requests and prevent them from
reaching back-end web applications. WAFs need to be manually
configured with a comprehensive set of rules or directives, compre-
hensibility of which correlates with WAFS detection capability. To
demonstrate this, we configured the ModSecurity with the OWASP
core rule set (CRS) [15], and it failed to detect a simple injection
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inside JavaScript code (Listing 4) against the web page of Listing 1.
WAFs are also ineffective in preventing JavaScript gadget exploita-
tions similar to Listing 3 since WAFs’ directives do not usually
consider such HTML tag injections malicious.
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1 GET /?id=Admin";alert(1);" HTTP/1.1
2 Host: vulnerable.com

Listing 4: An HTTP request towards an nginx web server
with ModSecurity enabled via OWASP core rule set (CRS).

inside JavaScript code (Listing 4) against the web page of Listing 1.
WAFs are also ineffective in preventing JavaScript gadget exploita-
tions similar to Listing 3 since WAFs’ directives do not usually
consider such HTML tag injections malicious.

3 OVERVIEW
The failure of state-of-the-art content injection mitigation tech-
niques (Section 2.2) is due to prior approaches not addressing the
root cause of context switching vulnerabilities. Parsers (e.g., HTML
parser, JavaScript parser, shell parser, etc.) are the entities that even-
tually parse an exploit, yet they do not know if a context switch
is triggered by attacker content or was developer intended. There-
fore, in Context-Auditor, we suggest a fundamentally different
approach: we model parsers using automata and detect any con-
text switching caused by attacker-controlled input as a potential
content injection exploit. Before discussing the details our context-
switching-based detection approach, we first highlight the deficien-
cies of state-of-the-art techniques (motivating us to introduce a
new detection approach) and the context switching concept. These
prerequisites provide a high-level operational model of Context-
Auditor.

3.1 Motivation
State-of-the-art mitigations attempt to identify characteristics of
common exploits as malicious: NoScript and XSS-Auditor oper-
ate based on regular expression matching. Similarly, ModSecurity
searches for known malicious-looking directives inside HTTP traf-
fic, and DOMPurify identifies known potentially harmful characters
or patterns. CSP only allows the inclusion of external files from
the same domain as the origin. These black-listing (browser filters,
ModSecurity, DOMPurify) or white-listing (CSP) approaches oper-
ate based on previously known patterns among content injection
exploits, which makes them unprepared for unfamiliar exploits.
Still, detecting the known patterns requires preparation of exten-
sive regular expressions or a comprehensive set of directives, which
is an error-prone and tedious task. More specifically, we argue that
many mitigation techniques do not provide a comprehensive detec-
tion approach against content injection exploits because they fail
to address content switches caused by untrusted input.

Bypass of ModSecurity (Listing 4) occurs as a consequence of
context switching from the double-quoted string context in the
JavaScript parser to after assignment, then to statement contexts.
State-of-the-art techniques cannot detect context switches due to
user-controlled data in web applications. Therefore, we recommend
a fundamentally new content injection exploit detection approach
in Context-Auditor that uses the context switching concept to
detect content injections.

3.2 Context Switching
We define context switching as when a parsing engine changes
parsing context (i.e., from one context to the next) based on the
input. The parsing context is defined by the grammar rules of
the specific language. For instance, consider the following gram-
mar rule in ECMA262 (JavaScript) specification used to interpret
double-quoted string literal. StringLiteral and DoubleStringCharacters

are non-terminals in the language and " is a control character de-
liminating DoubleStringCharacters token from double-quote token:

StringLiteral :: "DoubleStringCharacters"

DoubleStringCharacter :: SourceCharacter but not one of " or \

A web application developer writes code that generates dynamic
HTML and JavaScript content with implicit assumptions about
the parsing of it as a DoubleStringCharacter token. However, if user-
controlled input is used to generate a DoubleStringCharacter token
without sanitization, it can violate the developer’s intent by includ-
ing a double-quote character. This violation constitutes a potential
content injection exploit. We use this developer unintended con-
text switching to detect a content injection exploit. We extend this
concept to other languages that are parsing dynamic content of
web applications.

Our focus on context switching as the root cause of content
injection exploits allows us to provide a comprehensive and flexi-
ble detection technique. In Context-Auditor we model context
switching for HTML, JavaScript, CSS, and Bash languages, and
this model can be used as a stand-alone detection module with
fine-grained content injection detection coverage.

3.3 Context-Auditor Overview
At a high-level, Context-Auditor operates as a stand-alone de-
tection module as depicted in Figure 2. The high-level operational
model of Context-Auditor is as follows:

Input. Context-Auditor analyzes the content generated by web
applications to determine the impact of attacker-controlled
input on parsing. The input to a web application takes the
form of an HTTP request, and generated content includes
HTTP responses or dispatched shell commands. As its input,
Context-Auditor consumes the application’s generated
content and the location of untrusted (attacker-influenced)
bytes in that content. If not given knowledge of untrusted
bytes, we can infer the location of untrusted data in the gen-
erated content by identifying where content from the HTTP
request is used verbatim inside the generated content1.

Parsing. We designed automata to model context switches in the
form of state transitions. These automata are made of states
called parsing states: A parsing state includes syntactical
and lexical information about the current character, which
can determine the type of the token or the statement being
parsed. These automata are also aware of the exact loca-
tion in the nested structure of the language it is parsing.
The parser is used to process the application output, and its
design is detailed in Section 4.

1We discuss the implications of this choice on Context-Auditor’s efficacy in Sec-
tions 3.4 and 7.
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and lexical information about the current character, which
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Figure 1: A simplified graph of context switching in a browser parser while parsing HTML input. If the untrusted input is
admin, it does not trigger any context switch (parsing state is Quoted Literal for all characters of the input) and is therefore benign.
However, if the untrusted input is admin"; document.write(user);, this triggers a context switch at edge 56′ (from Quoted Literal state
to Stmn. End state) and is therefore malicious.

Figure 2: Context-Auditor is a detection black-box: given
a specific content and byte offsets of untrusted input, it will
return if the content is safe or is a content injection exploit.

Detection. The Context-Auditor automata parse the output
content (HTTP response or shell command) using its pars-
ing model from the first character of the output until the
last character of untrusted (tainted) data. If a context switch
occurs when parsing an untrusted data character in the ap-
plication output, then Context-Auditor has detected an
exploit. If no context switches occur as a result of untrusted
data characters, then the untrusted input is benign.

Mitigation. When Context-Auditor detects an exploit, the user
can choose to block the output from reaching its destination
(i.e., does not deliver the HTTP response or does not allow
the shell command to execute). This step can differ based on
the user’s deployment decision, and we discuss it in Section 5.

Figure 1 demonstrates the core idea of Context-Auditor, in-
cluding simplified parsing automata of HTML, CSS, and JavaScript,
along with the transitions between them. The bottom of Figure 1
has sample web application output (content input to Context-
Auditor), and the arrows ⇑ indicate context switching of the parser
on the index of the byte of the input (the transition on the edge
of the parsing automata are labeled with the same index). Figure 1
also demonstrates two different scenarios. In the first scenario, the
untrusted user input is admin (purple underline of the input), and
the untrusted user input is identified based on the purple HTTP
request. This input remains in the Quoted Literal state and does not
cause any context switching, therefore it is benign. In the second
scenario, the untrusted user input is admin"; document.write(user);

(red overline of the input), and the untrusted user input is identified
based on the red HTTP request. This input triggers a context switch
at byte 56 (edge 56′ ) to Stmt. End, and because this context switch
occurs while parsing untrusted user input Context-Auditor will
detect this as malicious. As demonstrated, if untrusted user input
does not cause a context switch (as is the case of the first scenario
with admin as the untrusted user input in Figure 1). A similar situa-
tion exists when parsing shell commands: if untrusted user input is
used as an argument, then it will not cause a context switch. In this
way, Context-Auditor uses context switching to detect content
injection exploits.
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Figure 3: User-Input Detector identifies the location of un-
trusted input inside HTTP response and propagates inputs
to Context-Auditor for further analysis.

3.4 Vulnerability Model
Identifying where untrusted input occurs inside web application’s
dynamic content (e.g., HTML or shell commands), without knowl-
edge of the server-side code, is a fundamentally difficult prob-
lem [22], and orthogonal to the detection of vulnerabilities by
Context-Auditor (user-input offset is an input to Context-
Auditor, as shown in Figure 2). Therefore, we outsource this or-
thogonal task to a module called User-Input Detector. Deployment of
Context-Auditor inside an operational environment requires a
User-Input Detector module in place, which in its simplest form per-
forms string matching. To demonstrate the generality of Context-
Auditor, we also deployed a heuristic from Buyukkayhan et al.’s
work [22] as the User-Input Detectormodule in Section 6 (experiment
E4): this heuristic identifies sensitive keywords of a payload and
their counterpart inside an HTML response and then attempts to
extend the matching offsets.

As an example of deploying an instance of Context-Auditor as
a detection module, we developed a prototype in which untrusted
input (coming from the HTTP request) used verbatim in generated
HTML content are identified and propagated to Context-Auditor
for further analysis (Figure 3). In another deployment, User-Input
Detector is a wrapper around /bin/sh and invokesContext-Auditor
in cases that are susceptible to command injection exploits. These
deployments have several implications on the types of vulnerabili-
ties that can be protected against by our prototype. The prototype
can prevent exploits against non-stored content injection exploits:
including reflected XSS, reflected scriptless exploits, and the vast
majority of command injection exploits. If injected content is stored
(for example, in a database) and later retrieved, our link of untrusted
user input is lost. Without some additional tracking of this input
(such as taint tracking and propagation), the prototype is not able
to determine whether or not parsing context switches are caused
by untrusted input.

The focus on reflected content injection allows Context-
Auditor to operate without any knowledge about or modifica-
tion to the underlying web application or web browser, and only
concerns itself with the HTTP request and the content generated
as a result of it. This allows Context-Auditor to be deployed in
many configurations. For instance, similar to trusted-types [66] that
uses DOMPurify to sanitize inputs to sensitive page’s sinks (e.g.
document.write and innerHTML_setter), we could integrate Context-
Auditor in a browser to detect and limit unwanted context switch-
ing in sensitive sinks. Theoretically, it could also be deployed inside
frameworks that detect stored XSS because these frameworks can
track untrusted user input.

3.5 Threat Model
We designed our solution to protect against a sophisticated attacker.
We assume that our attacker is aware of a content injection vul-
nerability in a target web application. The attacker can modify the
content of any request parameter and send the request to the target
web application to trigger the content injection vulnerability.

3.6 Comparison with Current Mitigations
Table 1 demonstrates the shortcomings of prior web-based mitiga-
tions against content injection exploits: XSS-Auditor only protects
against conventional XSS vectors and does not support any exploit
from HTML, CSS, or JavaScript contexts [61]. NoScript supports
these three languages and prevents scriptless exploits via CSP rules;
however its regular expressions might be ineffective in the face of
new exploitation techniques or complex nested JavaScript exploits.
DOMPurify is mainly focused on sanitization of HTML context
and as mentioned in Section 2.2 it could be conservative in input
sanitization. CSP is mostly concerned with inclusion of files or tags
from external domains, and it cannot protect against injection of
JavaScript and CSS code into existing JavaScript code. ModSecurity
is limited to its directives, and it can be insufficient to prevent sim-
ple injections inside JavaScript code, scriptless exploits, and many
HTML injections. However, Context-Auditor provides a fine-
grained content injection exploit detection solution for scripting,
scriptless, and command injection exploits (in HTML, JavaScript,
and CSS contexts).

For command injection exploits, we referred to code and data
separation solutions (e.g., SMask [33]) or taint-enhanced preven-
tion policies [69]. They provide a content injection measure against
trivial XSS and command injection, and both required some knowl-
edge of server-side deployment. As discussed in Section 3.4, despite
server-side (SMask and taint-enhanced policies), client-side (XSS-
Auditor, NoScript, CSP, and DOMPurify), and WAF (ModSecurity)
mitigation techniques that are tied to a specific location, Context-
Auditor has a flexible deployment. is also advantageous for mobile
browsers because they lag behind in implementation of similar
security measures proposed for desktop browsers [44].

4 BUILDING THE MODEL
The parsing engine, in the form of an automaton, is the core of
Context-Auditor. This automaton uses its state transitions to
identify context switches, which is the key feature used to detect
content injection exploits. We construct this automaton by manu-
ally analyzing HTML, JavaScript, CSS, and Bash languages.

4.1 Modeling Web Languages Parsing
To detect content injection exploits inside HTML content, we re-
quire an automaton to track parsing states of all characters in that
content. If we design an automaton with precise parsing states
encompassing syntactical and semantic information about the un-
derlying token or character in each location, we would be able to
detect a broad spectrum of content injection exploits that could be
inserted into any location inside HTML content. Such automaton
will consequently help us in the detection of exploits with various
granularities: we can detect coarse-grained exploits that cause a
language transition inside HTML content, and we can also detect
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Table 1: Comparison of XSS mitigation techniques based on their detection capabilities and their applicability to mobile
browsers. Missing detection capabilities are marked by numbers. 1: Depends on policy. 2: Pattern-matching-based. 3: Cannot
detect complex nested JavaScript code. 4: It deploys CSP rules to prevent scriptless exploits. 5: Limited tags. 6: cannot detect
content injected to CSS. In case of mobile support, we focused on whether the mitigation techniques introduced/considered
any measures for content injection exploits that are sent from a mobile browser or not.

Tool Context-based Content Injection Exploit Mitigation Command
Injection

Mobile
Support

Location

XSS JS HTML CSS

XSS-Auditor ✓ ✗ ✗ ✗ ✗ ✗ client

NoScript ✓ Partial 2,3 Partial 2,4 Partial 2,4 ✗ ✓ client

DOMPurify ✓ ✗ ✓ ✗ ✗ ✓ client

CSP Partial 1 ✗ Partial 5 Partial 6 ✗ ✓ client

ModSecurity ✓ Partial 2 Partial 2 ✗ ✗ ✗ proxy

SMask ✓ ✗ ✗ ✗ ✓ ✗ server

Taint-enhanced policies ✓ ✗ ✗ ✗ ✓ ✗ server

Context-Auditor ✓ ✓ ✓ ✓ ✓ applicable flexible

Figure 4: Possible deployment locations of all aforementioned XSS mitigations (XSS-Auditor, NoScript, CSP, ModSecurity, and
WAF) and Context-Auditor in an HTTP client and server communication model.

fine-grained (and short) exploits that only insert additional func-
tionality into existing code. Furthermore, unlike prior approaches,
this technique requires no prior knowledge of exploits.

To design an automaton with the state transition requirements
which supports three major web languages (HTML5, JavaScript,
and CSS) and the Bash language, we studied specifications of these
languages: specifically, we analyzed the lexical analysis stage from
the HTML 5 specification [9] (which is referred to as the tokeniza-
tion stage), the grammar rules from the ECMAScript specification
ECMA-262 [2], a tokenization procedure introduced by W3C in
CSS language specification [6], and the Bash language manual [4].
Considering the specifications, we realized that our candidate au-
tomaton must meet the following requirements:

(1) The next state of the automaton should be based on the
current state and input character (or lexical token).

(2) The automaton should be able to track history to support
nested structures, branches, arrays, objects, tags, etc.

(3) The automaton should support revisiting. According to
HTML 5 parsing specification, the parser needs to re-consume
a character under certain conditions [9]. Revisiting is also neces-
sary for parsing CSS and JavaScript, as for each of them, certain
characters in individual states might be the indication of either
a new token or a new statement. In this case, the character must

be re-analyzed in another state later which requires the revisiting
property.

Based on these constraints, we design the automaton in
Context-Auditor as a two-way finite pushdown automaton
(2PDA): A pushdown automaton (PDA) is a finite-state automaton
(FSA) with a stack, and a 2PDA complements PDA by supporting
revisiting input characters that are already consumed. We designed
our automaton in a similar fashion to theway that browsers parse an
HTML document: the HTML parser is the primary parser shipped
with any modern browser: It takes as input bytes representing
an HTML document and starts parsing these bytes character by
character. In the course of parsing, the HTML parser distinguishes
among different tokens and special characters and even different
languages in that document. For instance, while parsing a specific
byte index, it determines whether the index is inside an opening tag,
an attribute name/value or either inside a closing tag. The existence
of special tags marking the beginning of style sheets or embedded
scripts (e.g. <script> or <style> tags) is an indication of a new lan-
guage for the HTML parser; it will invoke the corresponding parser
(which is also included by the browser) to parse the embedded
content between the opening and closing tags.

Our automaton starts parsing the HTML document from the first
input character and then it moves forward character by character,
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Figure 5: The communication diagram of a Context-
Auditor-equipped HTTP client-server model to prevent
command injection exploits.

while moving along the sequence, it has detailed information about
the underlying language, token, and the specific language state-
ment being parsed. We refer to such information as context and
we use parsing states to reflect this concept inside an automaton.
We manually constructed the HTML 5 parsing automaton follow-
ing tokenization stage in the HTML 5 specification [9]. It tracks
the HTML tokens and tags for each character in the HTML se-
quence via parsing states’ information. It also supports transition
into states that are related to CSS and JavaScript language contexts
by reading a <script> or <style> tag. We also manually constructed
parsing states related to CSS and JavaScript languages by referring
to the related specification and grammar rules respectively (W3C
tokenization specification for CSS [6] and ECMA-262 [2]). Figure 7
in Appendix shows a simplified representation of the 2PDA.

4.2 Modeling Shell Command Parsing
Command injection exploits in web applications are the result of
dynamic generation of shell commands using untrusted input. Sim-
ilar to content injection detection for web languages, command
injection exploits are also detectable via identifying context switch-
ing. To model shell command parsing, we focused on identifying
different tokens in a shell command. We determine whether the
current character is part of a command or operand, or if it is a
special character which would change the type of a statement. The
parser also considers the hierarchical structure of a command to
keep track of quotes, back-ticks, parentheses, braces, etc. Figure 8 in
Appendix shows a simplified 2PDA of the shell parsing automaton.

5 IMPLEMENTATION
As discussed in Section 3.2, our context switching-based content
injection detection method provides us (among other benefits) with
the advantage of flexible deployment. Despite dedication of other
state-of-the-art content injection mitigation techniques to a spe-
cific location in the HTTP client–server communication model,
as shown in Figure 4, Context-Auditor can be deployed any-
where along this model. In our experiments we deployed Context-
Auditor in four different operational models:

Context-Auditor Shell Wrapper: Figure 5 shows how
Context-Auditorworks on server side as a module to detect com-
mand injection exploits. This module is a wrapper around /bin/sh

that implements the functionality of User-Input Detector: It generates
byte offsets marking reflections of HTTP request parameters in a se-
ries of commands sent to /bin/sh and invokes Context-Auditor’s
shell parser module with the input commands and byte offsets.
Context-Auditor nginx Plugin: Figure 6 illustrates how
Context-Auditor works in an environment with nginx as the
HTTP front-end, Apache httpd (or other web applications hosted
by Apache httpd) as the service back-end, and Context-Auditor
as a stand-alone detection module. The nginx plugin acts as an
HTTP proxy and detects untrusted input by identifying any input
data from the HTTP request in the HTML response. Then, nginx
forwards the intercepted data to Context-Auditor, and, after re-
ceiving the detection results from Context-Auditor, the nginx
plugin filters and blocks all responses that are content injection
exploits.
Context-Auditor Web Proxy: We integrated Context-
Auditor with mitmproxy [10]. This instance identifies byte offsets
of user-controlled data in HTTP responses and invokes Context-
Auditor for parsing analysis of the response. If a potential content
injection exploit is detected, then Context-Auditor blocks the
response.
Context-Auditor Chrome Extension:We modified an exist-
ing Chrome extension called Tamper [11], which allows us to inter-
cept Chrome’s HTTP requests and responses. From the request and
response, we identify untrusted input and pass this to Context-
Auditor to detect content injection exploits. Due to technical limi-
tations of the Tamper extension, we cannot block responses and
log them instead.

6 EVALUATION
In evaluating Context-Auditor, we sought to answer the follow-
ing research questions:
Q1. Effectiveness.Howmany content injection exploits in HTML,
CSS, JavaScript, and shell scripts can Context-Auditor detect,
and how many exploits does Context-Auditor miss?
Q2. Practicality. Does Context-Auditor exhibit a low false pos-
itive rate so that it can be deployed in real-world settings without
raising excessive false alarms?
Q3. Efficiency. Does Context-Auditor exhibit a low runtime
overhead in all evaluated scenarios to justify the deployment of it
in real-world settings?

6.1 Experiment Desgin
We designed seven experiments under different scenarios with
different data sets. Two experiments (E1 & E2) focus on the true
positive rates of Context-Auditor in detecting XSS and scriptless
exploits. To stress the generality of our technique, we also designed
an experiment (E3) demonstrating the effectiveness of Context-
Auditor in detection of command injection exploits. E4 showcases
the prevalence of the context switching phenomenon in a public
data set of XSS exploits. Another three experiments (E5, E6, and E7)
focus on showing the practicality (false positive rates) and efficiency
(runtime overhead) of Context-Auditor in real-world settings.
Table 2 shows an overview of these experiments.
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Figure 6: The communication diagram of a Context-
Auditor-equipped HTTP client-server model to prevent in-
jections inside a HTTP response.

6.2 Data Sets
We used both well-known public data sets and hand-crafted data
sets in our experiments. Public data sets include the PortSwigger
cross-site scripting cheat-sheet (E1) [63], Buyukkayhan et al.’s [22]
data set of reflected server-side XSS exploits (E4), and the OWASP
XSS cheat-sheet (E7) [3]. These are all ground-truth content injec-
tion exploits that should be detected and blocked by a perfect XSS
defense. We ran Context-Auditor on these data sets to evaluate
its effectiveness. Additionally, as discussed in Section 2.2 and Sec-
tion 3.6, we provide hand-crafted XSS exploits that bypass several
state-of-the-art XSS defenses but can be detected by Context-
Auditor, which we will not reiterate in this section. Because of the
lack of publicly available data sets, we also built our own data sets
of command injection exploits (E3) and web pages that are free of
content injection exploits based on known CVEs and a crawl of top
Alexa websites (E5), respectively.

6.3 E1: Detecting Web-based Content Injection
Exploits

To evaluate the effectiveness of Context-Auditor against real-
world web-based content injection exploits, we ran our prototype
against public data sets of XSS and scriptless exploits from PortSwig-
ger XSS cheat-sheet [63]. Portswigger website provides URLs via
link to vulnerable web applications for every exploit; we used both
vulnerable web applications and exploits from the website in the
experiment. We selected reflected XSS (including event handlers,
consuming tags, file upload, restricted characters, frameworks, pro-
tocols, special tags, other useful attributes, encoding, obfuscation,
and WAF bypass categories) and scriptless exploits specified to
work on the Google Chrome browser. The exploits also cover both
HTML and JavaScript contexts. Then, we use Chrome to access
each URL, proxy the requests through the Context-Auditor Web
Proxy (as described in Section 5), and report the number of detected
exploits. Reflected exploits constitute the majority of exploits in
the Portswigger dataset; therefore, we configured the experimenta-
tion environment via a User-Input Detection module that identifies
request parameters used verbatim inside their consequent HTML
response. Context-Auditor demonstrated 100% detection rate:

It successfully detected all 242 XSS exploits and all 25 scriptless
exploits.

6.4 E2: Detecting XSS Exploits Generated by
W3af

In this experiment, we deployedContext-Auditor as an nginx plu-
gin (Figure 6) and tested if it can prevent XSS exploits coming from
attackers. We first hosted under nginx 32 web applications provided
by Firing Range2 [8] that have reflected XSS vulnerabilities. The
content injection vulnerabilities in Firing Range may occur in all
three contexts, which are HTML, CSS, and JavaScript. We then ran
the open-source w3af web vulnerability scanner [14] against these
web applications, andw3af successfully detected XSS vulnerabilities
and generated XSS exploits on the 32 web pages. Then, we reset the
deployed web applications, enabled the Context-Auditor nginx
Plugin (as described in Section 5), and re-ran w3af against these
applications. Context-Auditor correctly detected and blocked all
requests with exploit payload generated by w3af, without block-
ing any benign requests. As a result, w3af did not report any XSS
vulnerabilities. This shows that Context-Auditor can detect and
block realistic XSS exploits.

6.5 E3: Detecting Command Injection Exploits
Due to the lack of existing data set of web applications with com-
mand injection vulnerabilities, we manually scanned all CVEs to
build a data set that comprises PHP web applications with known
command injection vulnerabilities. As dictated by the threat model
(Section 3), Context-Auditor only supports the situation where
the exploit payload is sent as a URL parameter and used verbatim in
a shell command. From these, we sampled three vulnerable web ap-
plications. We additionally checked a vulnerability report published
by RIPS [1] vulnerability scanner’s website and added another vul-
nerable application to our list. With these four web applications, we
verified the effectiveness of the Context-Auditor Shell Wrapper
(as described in Section 5) to detect command injection exploits
when it is deployed in a scenario similar to Figure 5. Context-
Auditor successfully detected content injection exploits for all of
these applications. Table 3 shows the list of these vulnerable web
applications and the detection capability of Context-Auditor.

The command injection vulnerability in the PHP File Manager re-
sides inside a backdoor that allows an attacker to execute arbitrary
OS commands, which is an intended malice. Because malicious in-
tention in a web application is outside the threat model of Context-
Auditor, whenever an attacker executes a single token command
(such as whomai or ls), Context-Auditor does not detect it. How-
ever, Context-Auditor can block any command with more than
one token sent to the web application.

6.6 E4: Measuring the Likelihood of Context
Switching in Exploits of a Public Data Set

Context switching concept is the core idea of Context-Auditor, to
realize the importance of it, we analyzed its prevalence on a public
data set of XSS exploits. We used a data set created by Buyukkayhan

2Firing Range is a web application test suite that contains a wide range of intentional
vulnerabilities. We used version 0.48 in this experiment.
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Table 2: Details of each experiment in the evaluation. “Standalone” means Context-Auditor is used as a standalone Python
library. The other four types of deployment are described in Section 5.

Related
ID Description Category Deployment Data set Question

E1 XSS and scriptless exploits detection web web proxy PortSwigger XSS cheat-sheet [63] Q1

E2 XSS detection, comparing against w3af web nginx plugin Firing Range [8] Q1

E3 Command injection exploits detection shell shell wrapper web applications with known command injection CVEs Q1

E4 Context switching probability in a public data set web standalone data set from [22] including exploits from xxsed [25] and obb [12] Q1

E5 False alarms and runtime overhead web web proxy Alexa Top 1,000 websites Q2 and Q3

E6 False alarms web web proxy WordPress and human-generated traffic Q2

E7 Runtime overhead web
nginx plugin

hand-crafted data set Q3web proxy
Chrome extension

Table 3: Context-Auditor’s command injection detection
capability. 1: Denotes multi-token commands.

CVE Application Version Detection

CVE-2015-5958 PHP File Manager 0.9.8 Partial 1

CVE-2010-4278 Pandora FMS 3.1 ✓

CVE-2008-6669 nweb2fax 0.2.7 ✓

0-day by RIPS [1] Oscommerce 2.3.4 ✓

et al. [22]: They performed a longitudinal study on reflected server-
side XSS exploits from XSSED [25] and OPENBUGBOUNTY [12]
data sets and consolidated those in their data set. This data set
has an attack table including data from actual exploits; such data
involves payloads and exploited HTML responses. However, each
payload could have several reflections in its HTML response; all
of those might not lead to actual exploits. They implemented a
greedy heuristic to identify these candidate reflections (user-input
detector module) and then used a series of methods to extract a
single working exploit from each response. Their heuristics was
a proper user-input detector module, therefore we reached out to
the authors and gained access to the heuristic’s code. Afterwards,
we ran an analysis on Buyukkayhan et al.’s [22] data set: For each
payload and HTML response in the data set, we ran them through
the heuristic and received a list of candidate exploit offsets. Context
switching idea claims that at least one of these candidates triggers
a context switching; therefore, we aimed to verify this claim in
this experiment. In this regard, we analyzed the parsing of 170,667
entries of the data set. Context-Auditor successfully flagged
148,778 (87.17%) of those payloads that trigger a state transition
in an HTML response; but, it did not report any state transition
for 21,889 of the entries (12.82%) in the data set. We manually
investigated some of these payloads to understand their nature.
The inability of Context-Auditor in handling such exploits is for
the following reasons:
(1) Context-Auditor is a research prototype to demonstrate the
practicality of the context switching concept in detecting content

injection exploits. Since we have manually designed and imple-
mented our parsing automata, it is prone to parsing errors and
incompleteness. We devoted significant engineering effort to im-
prove its coverage and detection capability, however, there is still
room for the implementation of methods to cover more corner cases
and inputs via syntactical errors. (2) Some payloads do not trigger
a context switching in any of the offsets. Such cases might occur
due to the reflection of an exploit inside an HTML attribute value
such as onclick, or it might lead to a second-order XSS exploitation.
Our current implementation of Context-Auditor could detect
exploits that force the HTML parser to transfer (from attribute name

state) into attribute value state; but it does not support interpreta-
tion of JavaScript context inside certain attribute value states (e.g.
onclick’s value). However, this is not an inherent limitation of our
approach, and it is a matter of engineering effort. In the case of
second-order XSS exploits, if the exploit reflects inside the assign-
ment part of a JavaScript Quoted Literal for instance, it does not
trigger a context switching at the time of parsing. But, it might lead
to exploitation at runtime, which Context-Auditor fails to detect.
Such exploitations are not in the scope of our experimentation
setup, we could theoretically detect a few of those by deploying
Context-Auditor at sensitive JavaScript sinks similar to Trusted
Types [66] and defining injection detection policies (similar to [50]).

6.7 E5: Performance Overhead and False
Positive on Top Alexa Websites

To evaluate the performance overhead and false positive rate of
Context-Auditor in real-world settings, we performed a crawl
of the top 1,000 Alexa websites [17]. For each URL we crawled, we
followed two random links (links with at least one parameter) and
measured the average loading time (over two runs) for the random
links. Since Context-Auditor is not invoked for the main URLs
(due to lack of URL parameters), we only considered the loading
time overhead of random links and excluded the overhead of main
links. Additionally, we monitored any potential false alarm trig-
gered by Context-Auditor in this experiment. Similar to E1, we
use Chrome to access each URL and proxy the requests through
mitmproxy (as described in Section 5). Since the experiment in-
volved benign traffic, we used a User-Input Detector module that
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recognizes request parameters used verbatim inside their conse-
quent HTML response, and Context-Auditor is invoked if the
length of those reflections is at least three characters. In case there
are multiple reflections of the URL parameters inside the HTML
response, we ran Context-Auditor for up to five reflections of
each URL parameter value.

Since mitmproxy imposes significant overhead itself, we first
crawled the random links in an experimentation setup with mitm-
proxy (Context-Auditor disabled) deployed, then we revisited
the links in an environment with both mitmproxy and Context-
Auditor enabled. We filter out any request timed out (with a time-
out of 20ms per request). Also, we did not involve links with nega-
tive loading time overhead in our loading time measurements. Our
measurements demonstrate an average of 4.7 seconds in loading
time overhead while visiting random links that involve an average
of three URL parameters. Impressively, Context-Auditor only
flagged one of the visited random links as malicious. The load-
ing time is caused to the following reasons: (1) In this experiment
Context-Auditor analyzes up to five reflections for each request
parameter value. For each, it parses the HTML response from the
first character, which causes excessive delays. (2) The parsing au-
tomata cannot correctly handle some syntax errors or parsing of
JavaScript statements not being deliminated by semicolons. We im-
plemented a monitoring algorithm (timing-based) that detects such
cases; it then adjusts the JavaScript code (by semicolon insertion) or
forces the parser into particular states, all of which impose delays.

6.8 E6: Measuring False Positives on a Blog Site
Context-Auditor may theoretically produce false positives when
user input causes context switches in the dynamic content of a web
application, and this action is part of the expected functionality
of the application. An example is a blogging website where users
may embed JavaScript code into their blog posts. To understand the
severeness of this scenario in a real-world setting, we performed a
study on theWordPress platform, a widely used blogging web appli-
cation, with a set of 10 human testers.We first deployed aWordPress
instance on a server and put it behind a Context-Auditor web
proxy. Then, given a unique user account and the URL to our Word-
Press instance, we allotted each tester 10 minutes and asked them
to freely use WordPress and report any unresponsiveness of the
application to us. Testers could create, add, delete, or modify any
blog posts and input any data, including JavaScript code or CSS.

Throughout the experiment, testers did not report any case of un-
responsiveness. Finally, a total of 1,680 HTTP request and response
pairs were collected and analyzed by Context-Auditor. Context-
Auditor did not report any content injection exploit, which means
it did not raise any false alarms. We believe this is because normal
WordPress users rarely need to insert custom JavaScript or CSS code
into their blog posts despite the support in WordPress. Advanced
WordPress users who need to insert JavaScript or CSS code into
their blog posts may choose to ignore Context-Auditorwarnings
temporarily. Therefore, we argue that Context-Auditor can be
applied in real world without causing excessive false alarms. In the
unlikely case that a tester might have attempted to exploit Word-
Press, we further verified that these HTTP requests and responses

do not contain any content injection exploits. SoContext-Auditor
also did not cause any false negatives in this experiment.

6.9 E7: Measuring Runtime Overhead
To evaluate the performance overhead of Context-Auditor, we
used the Selenium web driver [16] to request webpages. We ex-
tracted a list of content injection exploits from the OWASP XSS
cheat-sheet [3] categorizing them based on context. Then, we chose
a proper vulnerable web page from the Firing Range application [8],
for each exploit category and crafted corresponding links as the
input to Selenium driver. We measured the time of fetching a web-
page (1) without Context-Auditor, (2) with Context-Auditor
as an nginx plugin, (3) with Context-Auditor as a proxy, and (4)
with Context-Auditor as a browser extension. For the nginx plu-
gin and the proxy, Context-Auditor returns a 404 response code
when it detects a malicious request. This means that, depending on
the deployment scenario, the latency to load the HTTP request may
in fact, be faster for malicious requests. In case of the browser ex-
tension, the extension does not filter malicious responses, instead it
only logs requests/responses including a content injection exploit.

Table 4 has the performance measurements of this evaluation.
In the best case for benign requests, the Context-Auditor ng-
inx module, added 4ms (27%) of overhead. The worst case, the
Context-Auditor extension, added 19ms (127%) of overhead.
The best case of malicious requests, the Context-Auditor ng-
inx module, added 1ms (6%) of overhead, while the extension added
13ms (81%) of overhead in the worst case. As all implementations
of Context-Auditor are proof-of-concept research prototypes
(Context-Auditor is implemented in Python), we did not focus
on optimizing latency.

7 LIMITATIONS
As we showed in our evaluation, Context-Auditor is a new ap-
proach to defend against content injection exploits. However, it
does have a number of limitations, which we discuss in this section.
False positives. There was one false positive in our experiments,
however some circumstances could cause more: For instance, if a
blogging application (that allows blogging in raw HTML) reflects
the user’s newly created post (which is sent in as an HTTP param-
eter) in its response, Context-Auditor might report an exploit
despite this behavior being legitimate and intended by the website’s
developers. This is not as common: blogging platforms typically
send an HTTP redirect to the HTTP post request rather than reflect-
ing the update itself, in which case there would be no false positive
as the request will not be contained in the response. However, even
if the platform does not use a redirect (and actually reflects the
blog post), and Context-Auditor blocks the response, it will only
block the response that includes the reflection: in this case, the
submitted request will still be evaluated by the web application and
the behavior would be correct (i.e., the blog post would appear).
Second-order content injections. We define second-order ex-
ploits as content injection exploits that do not trigger any parsing
state transitions, yet still execute JavaScript. DOM-based XSS vul-
nerabilities are an example of second-order exploits: The content
of an untrusted JavaScript string is interpreted—during JavaScript
execution—as JavaScript code. These types of vulnerabilities are
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Table 4: False negative and true positive rate of Context-Auditor with benign and malicious sets, along with performance
analysis in terms of Latency (loading time in milliseconds) for the two lists, in four cases: without Context-Auditor or with
any of three instantiations of Context-Auditor (nginx module, web proxy and Chrome extension).

Loading time CA loading time CA loading time CA loading time
Case without CA for nginx for proxy for extension

Benign Requests 16ms 20ms 17ms 35ms

Malicious Requests 15ms 16ms 18ms 28ms

also called client-side XSS vulnerabilities, because the root cause
of the vulnerability exists in the JavaScript code of the web page.
In other words, there is no way to change the server-side code
to fix the vulnerability (e.g., when untrusted input is used as an
argument of eval function). Listing 1 contains a client-side XSS
vulnerability on Line 18. The malicious input for the id parameter
of the (JavaScript context) string literal <script>alert(1)</script>,
will not cause a context switch. However, at runtime the browser’s
JavaScript execution engine will send the str variable (which is
now untrusted data) to the document.write function, where it will
interpret this string as HTML (thus causing a second-order content
injection, where this parsing of the untrusted data by document.write

will cause a context switch in the HTML parser). Unfortunately,
Context-Auditor in its current deployment cannot detect such
exploits. Mitigating second-order (and, perhaps n-order) content
injection exploits would require modifying the browser to track the
untrusted data (e.g., via taint propagation), similar to the approach
proposed by Stock et al. [61]. Steffens et al. [59] have released a
taint-aware Chromium engine and a minimal extension, and we
can integrate Context-Auditor with those to analyze second-
order content injection exploits. Steffens et al. [59]’s tool defines a
function called DOMXSSFinderReport, which is invoked along with
each detection of a tainted flow into a sensitive client-side sink. We
can further call Context-Auditor inside this function to perform
parsing analysis on suspicious offsets of the inputs and raise flags
if necessary.
Transformations of user input. Server-side code or client-side
scripts may sometimes perform transformations on user-controlled
input, yet our current deployment of Context-Auditor supports
cases where input strings are reflected verbatim in response data.
However, using a different User-Input Detector module such as the
heuristic from Buyukkayhan et al. [22]’s work that allows a few
character mismatches between a payload and a candidate offset in
the HTML response, Context-Auditor could detect more cases
of context-switching. The tracking of input through transforma-
tions is a generally complex problem. There are approaches, such as
dynamic taint tracking, that could be used to track such transforma-
tions. However, as mentioned in Section 3.4, the task of user input
tracking is orthogonal to the core concept of Context-Auditor.
Any increase in the ability of untrusted input tracking, regardless of
the techniques used, would increase the space of content injection
vulnerability instances that Context-Auditor can protect.
Stored content injection. As discussed in Section 3.4, Context-
Auditor only supports non-stored content injections. This is due
to Context-Auditor’s inability to track untrusted input through
data stores used by an application. This is an analogous issue to

the transformation of user input: whereas that problem deals with
the tracking of input through transformations, this must tackle the
tracking of input through storage. One potential direction to address
this limitation is through the use of proxies between the web appli-
cation and its data stores: a very similar approach to SQL parsing
analysis by libinjection [27], except that having a parsing automa-
ton for query languages (an extension of Context-Auditor) we do
not need to instrument web applications’ source code, and we can
delegate the injection detection task to a proxy. This proxy must
implement a way of relating stored content and its corresponding
HTTP request content (similar to how the /bin/sh wrapper is han-
dled for shell injection) so that it could inform Context-Auditor
of content containing untrusted input. This represents a significant
engineering burden, but would expand Context-Auditor to yet
additional content injection vulnerability classes.
Syntax errors. Context-Auditor is a research prototype man-
ually built based on languages’ grammars and specifications. We
faced issues while parsing malformed HTML and JavaScript codes,
which is the cause of some parsing failures in E4 (Section 6). We in-
vestigated numerous parsing errors and failures, resolving many of
those. For instance, malformed JavaScript code or developers’ neg-
ligence to deliminate statements via a semicolon could create syn-
tax errors or indefinite parsing loops. Therefore, we implemented
monitoring code to identify such cases and force the parser to
Syntax_Error or Automatic_Semicolon_Insertion states when necessary.
Another monitoring code modifies the JavaScript parser’s input
according to automatic semicolon insertion rules of ECMA-262 [2]
specification when parser enters Automatic_Semicolon_Insertion state.
Overhead. As mentioned above, our current implementation of
Context-Auditor can not handle some syntactical errors properly;
we also made some simplification assumptions for implementing
our automaton, both of which might lead to infinite loops while
parsing malformed inputs. Our monitoring code detects infinite
loops via a timing constraint of 5 seconds on the last update of the
current_state’s value of the automaton and forces the automaton
into the parsing_error state. We first must find an optimum value
for the timing constraint’s threshold to decrease the automaton’s
overhead. Then, some simplifications of the automaton cause pars-
ing errors in the face of malformed inputs and impose additional
overhead. The simplifications were only for ease of design and im-
plementation (fewer state transitions), and we can substitute those
simplifications with more accurate state transitions in the future to
reduce parsing errors and overhead.
Browser quirks. Attackers may utilize browser-specific parsing
quirks when carrying out exploits. These quirks are notoriously
difficult to model, and Context-Auditor’s parsing model certainly
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does not handle all of them. However, Context-Auditor will
report an exploit as long as the attacker’s input triggers either a
parsing context transition or a parsing error. In the presence of
an attack utilizing a browser parsing quirk, the former case would
represent Context-Auditor correctly handling the quirk, and the
latter would represent the common case of Context-Auditor
not handling the quirk. In either case, the attack will be detected.
Of course, some browser quirks that do not trigger parsing errors
almost certainly exist. Context-Auditor would not be able to
detect the exploits, and this is a limitation of our approach3.
XS-Leak. Deployment of Context-Auditor in blocking mode
might raise the XS-leak issue: In some instances, an attacker might
infer the state of a victim at a target site by sending requests via
specially-crafted inputs [62]. Here, Context-Auditor blocks the
response since it can not distinguish between offsets that originate
from an attacker and the ones that are already part of the HTML
content. We can limit the XS-leak issue via the integration of taint-
tracking approaches and only flagging context switching cases that
are triggered by untrusted user input.

8 RELATEDWORK
There are many research projects on detecting XSS exploits,
such as sanitization [18, 42], policy enforcement [69], code-data
separation [24], moving target defense [48], and other server-
side [20, 34, 36, 43] and client-side [41, 45] mitigations. However,
none of them tackles the root cause of content injection vulnerabili-
ties. As our paper is based on context-sensitive parsing, we will only
discuss papers with relevant approaches in the rest of this section.
Stock et al.’s approach [61] in detection of DOM-based XSS vulner-
abilities is the closest to our idea. They focus on the tokenization
process with an observation that benign user input should only be
tokenized into literal tokens, and any non-literal token coming from
user input indicates an exploit. Context-Auditor generalizes their
insight into the root cause of all content injection vulnerabilities
and build a generic defense against such exploits. Prokhorenko et
al. propose the context-centric injection detection model to identify
exploits including XSS and SQL injection [52]. Compared to our
automaton, their view of context is more coarse-grained. Their
model is also tied to server-side PHP code.

ScriptGard focuses on correct placement of sanitizer functions in
server-side code considering the context that a sanitizer function is
used in [55]. XSS-GUARD [20] uses parsing analysis to determine
authorized scripts in an HTTP response that are intended by its
developers. It introduces the concept of “Shadow Web Pages” and
forces the application to follow the same execution path for both un-
trusted and benign input (by building parse trees and equivalency
checks). Although their idea seems similar to Context-Auditor,
the parsing state in our work exhibits a broader view by looking
deeper into the syntactical structure of all supported languages.
Moreover, our solution supports a wide range of content injection
exploits instead of merely XSS exploits. Mitigation of content injec-
tion vulnerabilities is also beneficial to limit compromises caused
by recent JavaScript-based vulnerabilities: Such as vulnerabilities in

3In fact, this is a fundamental limitation that man-in-the-middle components cannot
always correctly infer all behaviors of client or server side components [53].

postMessage event handlers [60], client-side CSRF [38], prototype pol-
lution [37], XS-leak [39, 62], and browse-based side-channels [57].

Taint-tracking had also been used to help detect and pre-
vent limited content injection exploitations (SQL injection, XSS,
etc.) [56, 65]. Positive [29, 55] and negative [47, 69] taint-tracking
trace safe data or untrusted inputs into sensitive sinks, respectively,
and examine whether they satisfy particular security policies. Posi-
tive taint-tracking requires domain knowledge and rewriting of the
source code to track sources of safe data throughout the program, it
is the opposite of our core idea in Context-Auditor (which relies
on the context switching concept and is not limited to the source
code or environment settings). Negative taint-tracking, however,
could assist Context-Auditor and provide offsets of suspicious in-
puts to our content injection detection module; Context-Auditor
can further analyze those offsets and report any context switching
that occurred while parsing the offsets.

9 CONCLUSION
For too long, the research community has focused on mitigating
XSS exploitation by blocking or detecting JavaScript execution. We
believe that a shift in thinking is necessary: by broadening our scope
to content injection, in terms of both vulnerabilities and exploits,
we can finally address the root cause of content injection exploits:
untrusted input that causes context switch in a parser. By modeling
the parsing process, we can detect these exploits. This paper de-
scribes Context-Auditor, a generalized detection mechanism for
content injection exploits. While Context-Auditor is capable of
detecting a wide range of injection vectors, our prototype supports
injections in HTML, CSS, JavaScript, and shell commands. Our
evaluation showed that Context-Auditor is effective, performant,
and unintrusive. Context-Auditor represents the first step to mit-
igating first-order webpage-based content injection exploits that
can be applied on the server side, in a proxy, or on the client side.
While Context-Auditor has pushed forward the state-of-the-art
in content injection mitigation, more research remains to extend
this idea to second-order content injection vulnerabilities—or even
beyond the web.
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10 APPENDIX
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Figure 7: A simplified 2PDA that represents state transitions between HTML, CSS, and JavaScript. HTML_Start is the starting
state. Script_Start and CSS_Start represent the states where first characters of JavaScript and CSS code are consumed by the
automaton, respectively. The automaton transitions back to HTML_Start from JavaScript or CSS states whenever it consumes
a sequence of characters that represent an end tag in the corresponding language.
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Figure 8: A simplified 2PDA that parses shell scripts. SH_Start is the starting state. Orange edges demonstrate the revisiting
functionality.
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